Step
*
of Lemma
r-bound-property
∀[x:ℝ]. ((r(-r-bound(x)) ≤ x) ∧ (x ≤ r(r-bound(x))))
BY
{ xxx(Auto
THEN Unfold `r-bound` 0
THEN (GenConclTerm ⌜TERMOF{integer-bound:o, 1:l} x⌝⋅ THENA Auto)
THEN Thin (-1)
THEN D -1
THEN Reduce 0
THEN (RenameVar `%' (-1)))xxx }
1
1. x : ℝ
2. n : ℕ+
3. |x| ≤ r(n)
⊢ r(-n) ≤ x
2
1. x : ℝ
2. r(-r-bound(x)) ≤ x
3. n : ℕ+
4. |x| ≤ r(n)
⊢ x ≤ r(n)
Latex:
Latex:
\mforall{}[x:\mBbbR{}]. ((r(-r-bound(x)) \mleq{} x) \mwedge{} (x \mleq{} r(r-bound(x))))
By
Latex:
xxx(Auto
THEN Unfold `r-bound` 0
THEN (GenConclTerm \mkleeneopen{}TERMOF\{integer-bound:o, 1:l\} x\mkleeneclose{}\mcdot{} THENA Auto)
THEN Thin (-1)
THEN D -1
THEN Reduce 0
THEN (RenameVar `\%' (-1)))xxx
Home
Index