Step
*
1
of Lemma
r2-compass-compass-simple1
1. a : ℝ^2
2. b : ℝ^2
3. c : {c:ℝ^2| a ≠ c}
4. ∀d:{d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (¬¬(∃w:ℝ^2. (c_w_d ∧ cw=cp)))) ∧ cd=cq ∧ (¬¬(∃w:ℝ^2. (a_w_b ∧ aw=aq))))}
∃u:{u:ℝ^2| ab=au ∧ cd=cu}
(∃v:ℝ^2 [((ab=av ∧ cd=cv)
∧ ((↓∃p,q:ℝ^2
((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b))))
⇒ (r2-left(u;a;c) ∧ r2-left(v;c;a))))])
5. d : {d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b)))}
⊢ ∃u:ℝ^2 [(ab=au ∧ cd=cu ∧ r2-left(u;a;c))]
BY
{ InstHyp [⌜d⌝] (-2)⋅ }
1
.....wf.....
1. a : ℝ^2
2. b : ℝ^2
3. c : {c:ℝ^2| a ≠ c}
4. ∀d:{d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (¬¬(∃w:ℝ^2. (c_w_d ∧ cw=cp)))) ∧ cd=cq ∧ (¬¬(∃w:ℝ^2. (a_w_b ∧ aw=aq))))}
∃u:{u:ℝ^2| ab=au ∧ cd=cu}
(∃v:ℝ^2 [((ab=av ∧ cd=cv)
∧ ((↓∃p,q:ℝ^2
((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b))))
⇒ (r2-left(u;a;c) ∧ r2-left(v;c;a))))])
5. d : {d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b)))}
⊢ d ∈ {d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (¬¬(∃w:ℝ^2. (c_w_d ∧ cw=cp)))) ∧ cd=cq ∧ (¬¬(∃w:ℝ^2. (a_w_b ∧ aw=aq))))}
2
1. a : ℝ^2
2. b : ℝ^2
3. c : {c:ℝ^2| a ≠ c}
4. ∀d:{d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (¬¬(∃w:ℝ^2. (c_w_d ∧ cw=cp)))) ∧ cd=cq ∧ (¬¬(∃w:ℝ^2. (a_w_b ∧ aw=aq))))}
∃u:{u:ℝ^2| ab=au ∧ cd=cu}
(∃v:ℝ^2 [((ab=av ∧ cd=cv)
∧ ((↓∃p,q:ℝ^2
((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b))))
⇒ (r2-left(u;a;c) ∧ r2-left(v;c;a))))])
5. d : {d:ℝ^2| ↓∃p,q:ℝ^2. ((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b)))}
6. ∃u:{u:ℝ^2| ab=au ∧ cd=cu}
(∃v:ℝ^2 [((ab=av ∧ cd=cv)
∧ ((↓∃p,q:ℝ^2. ((ab=ap ∧ (↓∃w:ℝ^2. (c_w_d ∧ cw=cp ∧ w ≠ d))) ∧ cd=cq ∧ (↓∃w:ℝ^2. (a_w_b ∧ aw=aq ∧ w ≠ b))))
⇒ (r2-left(u;a;c) ∧ r2-left(v;c;a))))])
⊢ ∃u:ℝ^2 [(ab=au ∧ cd=cu ∧ r2-left(u;a;c))]
Latex:
Latex:
1. a : \mBbbR{}\^{}2
2. b : \mBbbR{}\^{}2
3. c : \{c:\mBbbR{}\^{}2| a \mneq{} c\}
4. \mforall{}d:\{d:\mBbbR{}\^{}2|
\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
((ab=ap \mwedge{} (\mneg{}\mneg{}(\mexists{}w:\mBbbR{}\^{}2. (c\_w\_d \mwedge{} cw=cp)))) \mwedge{} cd=cq \mwedge{} (\mneg{}\mneg{}(\mexists{}w:\mBbbR{}\^{}2. (a\_w\_b \mwedge{} aw=aq))))\}
\mexists{}u:\{u:\mBbbR{}\^{}2| ab=au \mwedge{} cd=cu\}
(\mexists{}v:\mBbbR{}\^{}2 [((ab=av \mwedge{} cd=cv)
\mwedge{} ((\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
((ab=ap \mwedge{} (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2. (c\_w\_d \mwedge{} cw=cp \mwedge{} w \mneq{} d)))
\mwedge{} cd=cq
\mwedge{} (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2. (a\_w\_b \mwedge{} aw=aq \mwedge{} w \mneq{} b))))
{}\mRightarrow{} (r2-left(u;a;c) \mwedge{} r2-left(v;c;a))))])
5. d : \{d:\mBbbR{}\^{}2|
\mdownarrow{}\mexists{}p,q:\mBbbR{}\^{}2
((ab=ap \mwedge{} (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2. (c\_w\_d \mwedge{} cw=cp \mwedge{} w \mneq{} d)))
\mwedge{} cd=cq
\mwedge{} (\mdownarrow{}\mexists{}w:\mBbbR{}\^{}2. (a\_w\_b \mwedge{} aw=aq \mwedge{} w \mneq{} b)))\}
\mvdash{} \mexists{}u:\mBbbR{}\^{}2 [(ab=au \mwedge{} cd=cu \mwedge{} r2-left(u;a;c))]
By
Latex:
InstHyp [\mkleeneopen{}d\mkleeneclose{}] (-2)\mcdot{}
Home
Index