Step
*
1
1
of Lemma
range_sup-bound
1. I : {I:Interval| icompact(I)}
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
4. s : ℝ
5. sup{f[x] | x ∈ I} = s ∈ ℝ
6. sup(f[x](x∈I)) = s
7. c : ℝ
8. ∀x:ℝ. ((x ∈ I)
⇒ (f[x] ≤ c))
9. e : {e:ℝ| r0 < e}
⊢ s ≤ (c + e)
BY
{ (D -4 THEN (InstHyp [⌜e⌝] (-4)⋅ THENA Auto) THEN ExRepD) }
1
1. I : {I:Interval| icompact(I)}
2. f : {x:ℝ| x ∈ I} ⟶ ℝ
3. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
4. s : ℝ
5. sup{f[x] | x ∈ I} = s ∈ ℝ
6. f[x](x∈I) ≤ s
7. ∀e:ℝ. ((r0 < e)
⇒ (∃x:ℝ. ((x ∈ f[x](x∈I)) ∧ ((s - e) < x))))
8. c : ℝ
9. ∀x:ℝ. ((x ∈ I)
⇒ (f[x] ≤ c))
10. e : {e:ℝ| r0 < e}
11. x : ℝ
12. x ∈ f[x](x∈I)
13. (s - e) < x
⊢ s ≤ (c + e)
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. f : \{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}
3. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
4. s : \mBbbR{}
5. sup\{f[x] | x \mmember{} I\} = s
6. sup(f[x](x\mmember{}I)) = s
7. c : \mBbbR{}
8. \mforall{}x:\mBbbR{}. ((x \mmember{} I) {}\mRightarrow{} (f[x] \mleq{} c))
9. e : \{e:\mBbbR{}| r0 < e\}
\mvdash{} s \mleq{} (c + e)
By
Latex:
(D -4 THEN (InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-4)\mcdot{} THENA Auto) THEN ExRepD)
Home
Index