Step
*
2
of Lemma
range_sup_functionality2
1. I : {I:Interval| icompact(I)}
2. J : {I:Interval| icompact(I)}
3. f : {x:ℝ| x ∈ I} ⟶ ℝ
4. ∀x,y:{x:ℝ| x ∈ I} . ((x = y)
⇒ (f[x] = f[y]))
5. g : {x:ℝ| x ∈ J} ⟶ ℝ
6. ∀x,y:{x:ℝ| x ∈ J} . ((x = y)
⇒ (g[x] = g[y]))
7. ∀x:{x:ℝ| x ∈ I} . ∃y:{x:ℝ| x ∈ J} . (f[x] = g[y])
8. ∀x:{x:ℝ| x ∈ J} . ∃y:{x:ℝ| x ∈ I} . (f[y] = g[x])
9. x : ℝ
10. x ∈ J
⊢ g[x] ≤ sup{f[x] | x ∈ I}
BY
{ ((D -3 With ⌜x⌝ THENA Auto)
THEN D -1
THEN (InstLemma `rleq-range_sup` [⌜I⌝;⌜f⌝;⌜y⌝]⋅ THENM RWO "-1<" 0)
THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. J : \{I:Interval| icompact(I)\}
3. f : \{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}
4. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} I\} . ((x = y) {}\mRightarrow{} (f[x] = f[y]))
5. g : \{x:\mBbbR{}| x \mmember{} J\} {}\mrightarrow{} \mBbbR{}
6. \mforall{}x,y:\{x:\mBbbR{}| x \mmember{} J\} . ((x = y) {}\mRightarrow{} (g[x] = g[y]))
7. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . \mexists{}y:\{x:\mBbbR{}| x \mmember{} J\} . (f[x] = g[y])
8. \mforall{}x:\{x:\mBbbR{}| x \mmember{} J\} . \mexists{}y:\{x:\mBbbR{}| x \mmember{} I\} . (f[y] = g[x])
9. x : \mBbbR{}
10. x \mmember{} J
\mvdash{} g[x] \mleq{} sup\{f[x] | x \mmember{} I\}
By
Latex:
((D -3 With \mkleeneopen{}x\mkleeneclose{} THENA Auto)
THEN D -1
THEN (InstLemma `rleq-range\_sup` [\mkleeneopen{}I\mkleeneclose{};\mkleeneopen{}f\mkleeneclose{};\mkleeneopen{}y\mkleeneclose{}]\mcdot{} THENM RWO "-1<" 0)
THEN Auto)
Home
Index