Step
*
of Lemma
rat-rleq-cases
∀x,y:ℤ × ℕ+. ((↓ratreal(x) ≤ ratreal(y)) ∨ (↓ratreal(y) ≤ ratreal(x)))
BY
{ (((RepeatFor 2 (((D 0 THENA Auto) THEN D -1))
THEN UseWitness ⌜x1 * y2 ≤z y1 * x2⌝⋅
THEN (BoolCase ⌜x1 * y2 ≤z y1 * x2⌝⋅ THENA Auto)
THEN Unfolds ``btrue bfalse`` 0
THEN (MemCD THENA Auto))
THEN Unfold `it` 0
THEN MemTypeCD
THEN (RWO "ratreal-req" 0 THENA Auto))
THEN RWO "rleq-int-fractions" 0
THEN Auto) }
Latex:
Latex:
\mforall{}x,y:\mBbbZ{} \mtimes{} \mBbbN{}\msupplus{}. ((\mdownarrow{}ratreal(x) \mleq{} ratreal(y)) \mvee{} (\mdownarrow{}ratreal(y) \mleq{} ratreal(x)))
By
Latex:
(((RepeatFor 2 (((D 0 THENA Auto) THEN D -1))
THEN UseWitness \mkleeneopen{}x1 * y2 \mleq{}z y1 * x2\mkleeneclose{}\mcdot{}
THEN (BoolCase \mkleeneopen{}x1 * y2 \mleq{}z y1 * x2\mkleeneclose{}\mcdot{} THENA Auto)
THEN Unfolds ``btrue bfalse`` 0
THEN (MemCD THENA Auto))
THEN Unfold `it` 0
THEN MemTypeCD
THEN (RWO "ratreal-req" 0 THENA Auto))
THEN RWO "rleq-int-fractions" 0
THEN Auto)
Home
Index