Nuprl Lemma : rat-rleq-cases

x,y:ℤ × ℕ+.  ((↓ratreal(x) ≤ ratreal(y)) ∨ (↓ratreal(y) ≤ ratreal(x)))


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) rleq: x ≤ y nat_plus: + all: x:A. B[x] squash: T or: P ∨ Q product: x:A × B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a or: P ∨ Q rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: rev_uimplies: rev_uimplies(P;Q) squash: T bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  le_int_wf eqtt_to_assert assert_of_le_int rleq_functionality ratreal_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf ratreal-req rleq-int-fractions squash_wf rleq_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf istype-le decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt productElimination thin introduction cut extract_by_obid sqequalHypSubstitution isectElimination multiplyEquality hypothesisEquality setElimination rename hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination inlEquality_alt independent_pairEquality because_Cache sqequalRule inrFormation_alt dependent_functionElimination independent_functionElimination natural_numberEquality approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType imageMemberEquality baseClosed equalityIstype promote_hyp instantiate cumulativity inrEquality_alt productIsType

Latex:
\mforall{}x,y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.    ((\mdownarrow{}ratreal(x)  \mleq{}  ratreal(y))  \mvee{}  (\mdownarrow{}ratreal(y)  \mleq{}  ratreal(x)))



Date html generated: 2019_10_30-AM-09_28_00
Last ObjectModification: 2019_01_11-AM-11_39_39

Theory : reals


Home Index