Nuprl Lemma : ratreal-req

[a:ℤ]. ∀[b:ℕ+].  (ratreal(<a, b>(r(a)/r(b)))


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) rdiv: (x/y) req: y int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] pair: <a, b> int:
Definitions unfolded in proof :  ratreal: ratreal(r) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop:
Lemmas referenced :  rat-to-real-req nat_plus_inc_int_nzero req_witness rat-to-real_wf rdiv_wf int-to-real_wf rless-int nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis setElimination rename because_Cache independent_isectElimination inrFormation_alt dependent_functionElimination productElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbN{}\msupplus{}].    (ratreal(<a,  b>)  =  (r(a)/r(b)))



Date html generated: 2019_10_30-AM-09_16_57
Last ObjectModification: 2019_01_10-PM-00_43_40

Theory : reals


Home Index