Nuprl Lemma : rat-to-real_wf

[a:ℤ]. ∀[b:ℤ-o].  (r(a/b) ∈ ℝ)


Proof




Definitions occuring in Statement :  rat-to-real: r(a/b) real: int_nzero: -o uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-to-real: r(a/b)
Lemmas referenced :  int-rdiv_wf int-to-real_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache intEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (r(a/b)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-06_56_49
Last ObjectModification: 2015_12_28-AM-00_31_52

Theory : reals


Home Index