Nuprl Lemma : rat-to-real_wf
∀[a:ℤ]. ∀[b:ℤ-o].  (r(a/b) ∈ ℝ)
Proof
Definitions occuring in Statement : 
rat-to-real: r(a/b)
, 
real: ℝ
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-to-real: r(a/b)
Lemmas referenced : 
int-rdiv_wf, 
int-to-real_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
intEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (r(a/b)  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-06_56_49
Last ObjectModification:
2015_12_28-AM-00_31_52
Theory : reals
Home
Index