Nuprl Lemma : rat-to-real-req
∀[a:ℤ]. ∀[b:ℤ-o].  (r(a/b) = (r(a)/r(b)))
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rat-to-real: r(a/b)
, 
req: x = y
, 
int-to-real: r(n)
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
rat-to-real: r(a/b)
, 
member: t ∈ T
Lemmas referenced : 
int-rdiv-req, 
int-to-real_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
intEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (r(a/b)  =  (r(a)/r(b)))
Date html generated:
2016_05_18-AM-07_23_54
Last ObjectModification:
2015_12_28-AM-00_49_59
Theory : reals
Home
Index