Nuprl Lemma : rat-to-real-req

[a:ℤ]. ∀[b:ℤ-o].  (r(a/b) (r(a)/r(b)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rat-to-real: r(a/b) req: y int-to-real: r(n) int_nzero: -o uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] rat-to-real: r(a/b) member: t ∈ T
Lemmas referenced :  int-rdiv-req int-to-real_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis intEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (r(a/b)  =  (r(a)/r(b)))



Date html generated: 2016_05_18-AM-07_23_54
Last ObjectModification: 2015_12_28-AM-00_49_59

Theory : reals


Home Index