Nuprl Lemma : ratreal_wf
∀[r:ℤ × ℕ+]. (ratreal(r) ∈ ℝ)
Proof
Definitions occuring in Statement : 
ratreal: ratreal(r)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ratreal: ratreal(r)
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
rat-to-real_wf, 
nat_plus_inc_int_nzero, 
istype-int, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
spreadEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
productIsType, 
universeIsType
Latex:
\mforall{}[r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (ratreal(r)  \mmember{}  \mBbbR{})
Date html generated:
2019_10_30-AM-09_16_26
Last ObjectModification:
2019_01_10-PM-00_31_47
Theory : reals
Home
Index