Nuprl Lemma : ratreal_wf

[r:ℤ × ℕ+]. (ratreal(r) ∈ ℝ)


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) real: nat_plus: + uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ratreal: ratreal(r) subtype_rel: A ⊆B
Lemmas referenced :  rat-to-real_wf nat_plus_inc_int_nzero istype-int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule spreadEquality hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry productIsType universeIsType

Latex:
\mforall{}[r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (ratreal(r)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_30-AM-09_16_26
Last ObjectModification: 2019_01_10-PM-00_31_47

Theory : reals


Home Index