Step
*
1
2
1
1
2
of Lemma
rational-IVT-1
1. a : ℤ × ℕ+
2. b : ℤ × ℕ+
3. f : (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] : {x:ℝ| x ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ
5. [%] : (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} .  ((x = y) 
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+. ((ratreal(r) ∈ [ratreal(a), ratreal(b)]) 
⇒ (g[ratreal(r)] = ratreal(f[r]))))
6. s : p:(x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                              (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                              ∧ (ratreal(x) ≤ ratreal(y))
                                                                              ∧ (r0 ≤ g[ratreal(y)])} )
⟶ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                 (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                 ∧ (ratreal(x) ≤ ratreal(y))
                                                                                 ∧ (r0 ≤ g[ratreal(y)])} )
7. ∀p:x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                    (ratreal(y)
                                                                                    ∈ [ratreal(a), ratreal(b)])
                                                                                    ∧ (ratreal(x) ≤ ratreal(y))
                                                                                    ∧ (r0 ≤ g[ratreal(y)])} 
     ((ratreal(fst(p)) ≤ ratreal(fst((s p))))
     ∧ (ratreal(snd((s p))) ≤ ratreal(snd(p)))
     ∧ ((ratreal(snd((s p))) - ratreal(fst((s p)))) = (rinv(r(2)) * (ratreal(snd(p)) - ratreal(fst(p))))))
8. <a, b> ∈ x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                 (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                 ∧ (ratreal(x) ≤ ratreal(y))
                                                                                 ∧ (r0 ≤ g[ratreal(y)])} 
9. λn.primrec(n;<a, b>λi,r. (s r)) ∈ ℕ ⟶ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}\000C 
                                     × {y:ℤ × ℕ+| 
                                        (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                        ∧ (ratreal(x) ≤ ratreal(y))
                                        ∧ (r0 ≤ g[ratreal(y)])} )
10. i : ℕ
11. v : x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                              (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                              ∧ (ratreal(x) ≤ ratreal(y))
                                                                              ∧ (r0 ≤ g[ratreal(y)])} 
12. ((λn.primrec(n;<a, b>λi,r. (s r))) i)
= v
∈ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                ∧ (ratreal(x) ≤ ratreal(y))
                                                                                ∧ (r0 ≤ g[ratreal(y)])} )
⊢ (ratreal(fst(v)) ∈ [ratreal(a), ratreal(b)])
∧ (ratreal(snd(v)) ∈ [ratreal(a), ratreal(b)])
∧ (ratreal(fst(v)) ≤ ratreal(fst((s v))))
∧ (ratreal(fst(v)) ≤ ratreal(snd(v)))
∧ (ratreal(snd((s v))) ≤ ratreal(snd(v)))
∧ (g[ratreal(fst(v))] ≤ r0)
∧ (r0 ≤ g[ratreal(snd(v))])
∧ ((ratreal(snd(v)) - ratreal(fst(v))) = (rinv(r(2))^i * (ratreal(b) - ratreal(a))))
BY
{ (D -2 THEN Auto THEN Reduce 0 THEN Auto) }
1
1. a : ℤ × ℕ+
2. b : ℤ × ℕ+
3. f : (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] : {x:ℝ| x ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ
5. [%] : (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} .  ((x = y) 
⇒ (g[x] = g[y])))
∧ (∀r:ℤ × ℕ+. ((ratreal(r) ∈ [ratreal(a), ratreal(b)]) 
⇒ (g[ratreal(r)] = ratreal(f[r]))))
6. s : p:(x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                              (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                              ∧ (ratreal(x) ≤ ratreal(y))
                                                                              ∧ (r0 ≤ g[ratreal(y)])} )
⟶ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                 (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                 ∧ (ratreal(x) ≤ ratreal(y))
                                                                                 ∧ (r0 ≤ g[ratreal(y)])} )
7. ∀p:x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                    (ratreal(y)
                                                                                    ∈ [ratreal(a), ratreal(b)])
                                                                                    ∧ (ratreal(x) ≤ ratreal(y))
                                                                                    ∧ (r0 ≤ g[ratreal(y)])} 
     ((ratreal(fst(p)) ≤ ratreal(fst((s p))))
     ∧ (ratreal(snd((s p))) ≤ ratreal(snd(p)))
     ∧ ((ratreal(snd((s p))) - ratreal(fst((s p)))) = (rinv(r(2)) * (ratreal(snd(p)) - ratreal(fst(p))))))
8. <a, b> ∈ x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                 (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                 ∧ (ratreal(x) ≤ ratreal(y))
                                                                                 ∧ (r0 ≤ g[ratreal(y)])} 
9. λn.primrec(n;<a, b>λi,r. (s r)) ∈ ℕ ⟶ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}\000C 
                                     × {y:ℤ × ℕ+| 
                                        (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                        ∧ (ratreal(x) ≤ ratreal(y))
                                        ∧ (r0 ≤ g[ratreal(y)])} )
10. i : ℕ
11. x : {x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)} 
12. v1 : {y:ℤ × ℕ+| (ratreal(y) ∈ [ratreal(a), ratreal(b)]) ∧ (ratreal(x) ≤ ratreal(y)) ∧ (r0 ≤ g[ratreal(y)])} 
13. ((λn.primrec(n;<a, b>λi,r. (s r))) i)
= <x, v1>
∈ (x:{x:ℤ × ℕ+| (ratreal(x) ∈ [ratreal(a), ratreal(b)]) ∧ (g[ratreal(x)] ≤ r0)}  × {y:ℤ × ℕ+| 
                                                                                (ratreal(y) ∈ [ratreal(a), ratreal(b)])
                                                                                ∧ (ratreal(x) ≤ ratreal(y))
                                                                                ∧ (r0 ≤ g[ratreal(y)])} )
14. ratreal(fst(<x, v1>)) ∈ [ratreal(a), ratreal(b)]
15. ratreal(snd(<x, v1>)) ∈ [ratreal(a), ratreal(b)]
16. ratreal(fst(<x, v1>)) ≤ ratreal(fst((s <x, v1>)))
17. ratreal(fst(<x, v1>)) ≤ ratreal(snd(<x, v1>))
18. ratreal(snd((s <x, v1>))) ≤ ratreal(snd(<x, v1>))
19. g[ratreal(fst(<x, v1>))] ≤ r0
20. r0 ≤ g[ratreal(snd(<x, v1>))]
⊢ (ratreal(v1) - ratreal(x)) = (rinv(r(2))^i * (ratreal(b) - ratreal(a)))
Latex:
Latex:
1.  a  :  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}
2.  b  :  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}
3.  f  :  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
4.  [g]  :  \{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}    {}\mrightarrow{}  \mBbbR{}
5.  [\%]  :  (ratreal(a)  \mleq{}  ratreal(b))
\mwedge{}  (ratreal(f[a])  \mleq{}  r0)
\mwedge{}  (r0  \mleq{}  ratreal(f[b]))
\mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
\mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [ratreal(a),  ratreal(b)])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))
6.  s  :  p:(x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\} 
\mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
      (ratreal(y)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\}  )
{}\mrightarrow{}  (x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\} 
      \mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
            (ratreal(y)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\}  )
7.  \mforall{}p:x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\} 
            \mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
                  (ratreal(y)  \mmember{}  [ratreal(a),  ratreal(b)])
                  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))
                  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\} 
          ((ratreal(fst(p))  \mleq{}  ratreal(fst((s  p))))
          \mwedge{}  (ratreal(snd((s  p)))  \mleq{}  ratreal(snd(p)))
          \mwedge{}  ((ratreal(snd((s  p)))  -  ratreal(fst((s  p))))
              =  (rinv(r(2))  *  (ratreal(snd(p))  -  ratreal(fst(p))))))
8.  <a,  b>  \mmember{}  x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\} 
      \mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
            (ratreal(y)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\} 
9.  \mlambda{}n.primrec(n;<a,  b>\mlambda{}i,r.  (s  r))  \mmember{}  \mBbbN{}  {}\mrightarrow{}  (x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
                                                                                  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])
                                                                                  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\}    \mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
                                                                                                                                  (ratreal(y)
                                                                                                                                  \mmember{}  [ratreal(a),  ratreal(b)])
                                                                                                                                  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))
                                                                                                                                  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\}  )
10.  i  :  \mBbbN{}
11.  v  :  x:\{x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  (ratreal(x)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (g[ratreal(x)]  \mleq{}  r0)\} 
\mtimes{}  \{y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}| 
      (ratreal(y)  \mmember{}  [ratreal(a),  ratreal(b)])  \mwedge{}  (ratreal(x)  \mleq{}  ratreal(y))  \mwedge{}  (r0  \mleq{}  g[ratreal(y)])\} 
12.  ((\mlambda{}n.primrec(n;<a,  b>\mlambda{}i,r.  (s  r)))  i)  =  v
\mvdash{}  (ratreal(fst(v))  \mmember{}  [ratreal(a),  ratreal(b)])
\mwedge{}  (ratreal(snd(v))  \mmember{}  [ratreal(a),  ratreal(b)])
\mwedge{}  (ratreal(fst(v))  \mleq{}  ratreal(fst((s  v))))
\mwedge{}  (ratreal(fst(v))  \mleq{}  ratreal(snd(v)))
\mwedge{}  (ratreal(snd((s  v)))  \mleq{}  ratreal(snd(v)))
\mwedge{}  (g[ratreal(fst(v))]  \mleq{}  r0)
\mwedge{}  (r0  \mleq{}  g[ratreal(snd(v))])
\mwedge{}  ((ratreal(snd(v))  -  ratreal(fst(v)))  =  (rinv(r(2))\^{}i  *  (ratreal(b)  -  ratreal(a))))
By
Latex:
(D  -2  THEN  Auto  THEN  Reduce  0  THEN  Auto)
Home
Index