Nuprl Lemma : rational-IVT-1
∀a,b:ℤ × ℕ+. ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+).
  ∀[g:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ]
    ∃c:{c:ℝ| c ∈ [ratreal(a), ratreal(b)]}  [(g[c] = r0)] 
    supposing (ratreal(a) ≤ ratreal(b))
    ∧ (ratreal(f[a]) ≤ r0)
    ∧ (r0 ≤ ratreal(f[b]))
    ∧ (∀x,y:{x:ℝ| x ∈ [ratreal(a), ratreal(b)]} .  ((x = y) ⇒ (g[x] = g[y])))
    ∧ (∀r:ℤ × ℕ+. ((ratreal(r) ∈ [ratreal(a), ratreal(b)]) ⇒ (g[ratreal(r)] = ratreal(f[r]))))
Proof
Definitions occuring in Statement : 
ratreal: ratreal(r), 
rccint: [l, u], 
i-member: r ∈ I, 
rleq: x ≤ y, 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
top: Top, 
pi1: fst(t), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
so_lambda: λ2x.t[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
int_nzero: ℤ-o, 
true: True, 
nequal: a ≠ b ∈ T , 
sq_type: SQType(T), 
guard: {T}, 
rneq: x ≠ y, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
less_than': less_than'(a;b), 
ravg: ravg(x;y), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
cand: A c∧ B, 
i-member: r ∈ I, 
rccint: [l, u], 
label: ...$L... t, 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
nat: ℕ, 
ge: i ≥ j , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
rleq: x ≤ y, 
rnonneg: rnonneg(x), 
le: A ≤ B, 
rbetween: x≤y≤z, 
int_upper: {i...}, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
int-to-real: r(n), 
rinv: rinv(x), 
mu-ge: mu-ge(f;n), 
lt_int: i <z j, 
absval: |i|, 
eq_int: (i =z j), 
accelerate: accelerate(k;f), 
reg-seq-inv: reg-seq-inv(x), 
reg-seq-adjust: reg-seq-adjust(n;x), 
real: ℝ, 
req: x = y, 
rfun: I ⟶ℝ, 
r-ap: f(x)
Lemmas referenced : 
rleq_wf, 
ratreal_wf, 
int-to-real_wf, 
req_wf, 
i-member_wf, 
rccint_wf, 
real_wf, 
istype-int, 
nat_plus_wf, 
member_rccint_lemma, 
istype-void, 
rat-nat-div_wf, 
ratadd_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
set-value-type, 
equal_wf, 
product-value-type, 
ravg-dist-when-rleq, 
sq_stable__rleq, 
ravg-weak-between, 
int-rdiv_wf, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
radd_wf, 
ravg_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
req_weakening, 
rsub_wf, 
rmul_wf, 
req_functionality, 
req_transitivity, 
ratreal-rat-nat-div, 
int-rdiv_functionality, 
ratreal-ratadd, 
int-rdiv-req, 
iff_weakening_uiff, 
rleq_functionality, 
req_inversion, 
squash_wf, 
true_wf, 
rsub_functionality, 
rleq_transitivity, 
sq_stable__req, 
subtype_rel_self, 
product_subtype_base, 
set_subtype_base, 
less_than_wf, 
interval_wf, 
iff_weakening_equal, 
rmul_preserves_req, 
rinv_wf2, 
rat-zero-cases, 
rleq_weakening, 
rleq_weakening_equal, 
pi1_wf_top, 
itermSubtract_wf, 
itermMultiply_wf, 
itermVar_wf, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_functionality, 
pi2_wf, 
primrec_wf, 
int_seg_wf, 
istype-nat, 
subtype_rel_product, 
nat_wf, 
nat_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
istype-le, 
rnexp_wf, 
primrec-unroll, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
istype-universe, 
add-subtract-cancel, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtract_wf, 
ge_wf, 
req_witness, 
rnexp_zero_lemma, 
primrec0_lemma, 
subtract-1-ge-0, 
int_term_value_subtract_lemma, 
rmul_comm, 
rmul_assoc, 
rnexp_step, 
set_wf, 
istype-top, 
top_wf, 
common-limit-squeeze, 
le_witness_for_triv, 
rinv-exp-converges-ext, 
exp_wf2, 
mul_bounds_1b, 
exp_wf_nat_plus, 
rnexp-positive, 
rdiv_functionality, 
req-int, 
nat_plus_properties, 
int_term_value_mul_lemma, 
converges-to_functionality, 
rnexp_functionality, 
rinv-as-rdiv, 
rnexp-rdiv, 
rnexp-one, 
rnexp-int, 
const-rmul-limit-with-bound, 
ratbound_wf, 
ratsub_wf, 
rabs_wf, 
rleq-ratbound, 
ratreal-ratsub, 
rabs_functionality, 
rmul-zero, 
rmul-nonneg-case1, 
rnexp-nonneg, 
rleq_weakening_rless, 
rleq-implies-rleq, 
rleq-limit-constant, 
constant-rleq-limit, 
function-limit, 
rfun_wf, 
r-ap_wf, 
req-iff-not-rneq, 
rless_transitivity1, 
rless_irreflexivity, 
rneq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
productIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
natural_numberEquality, 
functionIsType, 
because_Cache, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
setIsType, 
inhabitedIsType, 
productElimination, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
productEquality, 
intEquality, 
lambdaEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
cutEval, 
equalityIstype, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
cumulativity, 
sqequalBase, 
closedConclusion, 
inrFormation_alt, 
independent_pairFormation, 
promote_hyp, 
setEquality, 
applyLambdaEquality, 
universeEquality, 
dependent_pairEquality_alt, 
independent_pairEquality, 
int_eqEquality, 
functionExtensionality, 
addEquality, 
equalityElimination, 
intWeakElimination, 
functionIsTypeImplies, 
multiplyEquality, 
dependent_set_memberFormation_alt
Latex:
\mforall{}a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  \mforall{}f:(\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}).
    \mforall{}[g:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}    {}\mrightarrow{}  \mBbbR{}]
        \mexists{}c:\{c:\mBbbR{}|  c  \mmember{}  [ratreal(a),  ratreal(b)]\}    [(g[c]  =  r0)] 
        supposing  (ratreal(a)  \mleq{}  ratreal(b))
        \mwedge{}  (ratreal(f[a])  \mleq{}  r0)
        \mwedge{}  (r0  \mleq{}  ratreal(f[b]))
        \mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
        \mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [ratreal(a),  ratreal(b)])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))
Date html generated:
2019_10_30-AM-10_00_13
Last ObjectModification:
2019_01_11-PM-03_39_13
Theory : reals
Home
Index