Nuprl Lemma : rational-IVT-1

a,b:ℤ × ℕ+. ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+).
  ∀[g:{x:ℝx ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ]
    ∃c:{c:ℝc ∈ [ratreal(a), ratreal(b)]}  [(g[c] r0)] 
    supposing (ratreal(a) ≤ ratreal(b))
    ∧ (ratreal(f[a]) ≤ r0)
    ∧ (r0 ≤ ratreal(f[b]))
    ∧ (∀x,y:{x:ℝx ∈ [ratreal(a), ratreal(b)]} .  ((x y)  (g[x] g[y])))
    ∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [ratreal(a), ratreal(b)])  (g[ratreal(r)] ratreal(f[r]))))


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) rccint: [l, u] i-member: r ∈ I rleq: x ≤ y req: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T prop: so_apply: x[s] implies:  Q top: Top pi1: fst(t) pi2: snd(t) subtype_rel: A ⊆B nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False so_lambda: λ2x.t[x] sq_stable: SqStable(P) squash: T int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) ravg: ravg(x;y) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) cand: c∧ B i-member: r ∈ I rccint: [l, u] label: ...$L... t rdiv: (x/y) req_int_terms: t1 ≡ t2 nat: ge: i ≥  bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B rbetween: x≤y≤z int_upper: {i...} rless: x < y sq_exists: x:A [B[x]] int-to-real: r(n) rinv: rinv(x) mu-ge: mu-ge(f;n) lt_int: i <j absval: |i| eq_int: (i =z j) accelerate: accelerate(k;f) reg-seq-inv: reg-seq-inv(x) reg-seq-adjust: reg-seq-adjust(n;x) real: req: y rfun: I ⟶ℝ r-ap: f(x)
Lemmas referenced :  rleq_wf ratreal_wf int-to-real_wf req_wf i-member_wf rccint_wf real_wf istype-int nat_plus_wf member_rccint_lemma istype-void rat-nat-div_wf ratadd_wf decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than set-value-type equal_wf product-value-type ravg-dist-when-rleq sq_stable__rleq ravg-weak-between int-rdiv_wf subtype_base_sq int_subtype_base nequal_wf radd_wf ravg_wf rdiv_wf rless-int rless_wf req_weakening rsub_wf rmul_wf req_functionality req_transitivity ratreal-rat-nat-div int-rdiv_functionality ratreal-ratadd int-rdiv-req iff_weakening_uiff rleq_functionality req_inversion squash_wf true_wf rsub_functionality rleq_transitivity sq_stable__req subtype_rel_self product_subtype_base set_subtype_base less_than_wf interval_wf iff_weakening_equal rmul_preserves_req rinv_wf2 rat-zero-cases rleq_weakening rleq_weakening_equal pi1_wf_top itermSubtract_wf itermMultiply_wf itermVar_wf rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rmul_functionality pi2_wf primrec_wf int_seg_wf istype-nat subtype_rel_product nat_wf nat_properties decidable__le intformand_wf intformle_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma istype-le rnexp_wf primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot assert_wf istype-universe add-subtract-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma subtract_wf ge_wf req_witness rnexp_zero_lemma primrec0_lemma subtract-1-ge-0 int_term_value_subtract_lemma rmul_comm rmul_assoc rnexp_step set_wf istype-top top_wf common-limit-squeeze le_witness_for_triv rinv-exp-converges-ext exp_wf2 mul_bounds_1b exp_wf_nat_plus rnexp-positive rdiv_functionality req-int nat_plus_properties int_term_value_mul_lemma converges-to_functionality rnexp_functionality rinv-as-rdiv rnexp-rdiv rnexp-one rnexp-int const-rmul-limit-with-bound ratbound_wf ratsub_wf rabs_wf rleq-ratbound ratreal-ratsub rabs_functionality rmul-zero rmul-nonneg-case1 rnexp-nonneg rleq_weakening_rless rleq-implies-rleq rleq-limit-constant constant-rleq-limit function-limit rfun_wf r-ap_wf req-iff-not-rneq rless_transitivity1 rless_irreflexivity rneq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut sqequalRule productIsType universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality natural_numberEquality functionIsType because_Cache setElimination rename dependent_set_memberEquality_alt setIsType inhabitedIsType productElimination dependent_functionElimination isect_memberEquality_alt voidElimination productEquality intEquality lambdaEquality_alt equalityTransitivity equalitySymmetry unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt cutEval equalityIstype imageMemberEquality baseClosed imageElimination instantiate cumulativity sqequalBase closedConclusion inrFormation_alt independent_pairFormation promote_hyp setEquality applyLambdaEquality universeEquality dependent_pairEquality_alt independent_pairEquality int_eqEquality functionExtensionality addEquality equalityElimination intWeakElimination functionIsTypeImplies multiplyEquality dependent_set_memberFormation_alt

Latex:
\mforall{}a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  \mforall{}f:(\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}).
    \mforall{}[g:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}    {}\mrightarrow{}  \mBbbR{}]
        \mexists{}c:\{c:\mBbbR{}|  c  \mmember{}  [ratreal(a),  ratreal(b)]\}    [(g[c]  =  r0)] 
        supposing  (ratreal(a)  \mleq{}  ratreal(b))
        \mwedge{}  (ratreal(f[a])  \mleq{}  r0)
        \mwedge{}  (r0  \mleq{}  ratreal(f[b]))
        \mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
        \mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [ratreal(a),  ratreal(b)])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))



Date html generated: 2019_10_30-AM-10_00_13
Last ObjectModification: 2019_01_11-PM-03_39_13

Theory : reals


Home Index