Nuprl Lemma : int-rdiv_functionality
∀[k1,k2:ℤ-o]. ∀[a,b:ℝ].  ((a)/k1 = (b)/k2) supposing ((k1 = k2 ∈ ℤ) and (a = b))
Proof
Definitions occuring in Statement : 
int-rdiv: (a)/k1
, 
req: x = y
, 
real: ℝ
, 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
req_functionality, 
int-rdiv_wf, 
rdiv_wf, 
int-to-real_wf, 
rneq-int, 
int_nzero_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-T-base, 
int-rdiv-req, 
req_witness, 
equal_wf, 
req_wf, 
real_wf, 
int_nzero_wf, 
req_weakening, 
rdiv_functionality, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
baseClosed, 
applyEquality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[k1,k2:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[a,b:\mBbbR{}].    ((a)/k1  =  (b)/k2)  supposing  ((k1  =  k2)  and  (a  =  b))
Date html generated:
2016_10_26-AM-09_09_21
Last ObjectModification:
2016_08_26-PM-01_57_13
Theory : reals
Home
Index