Nuprl Lemma : int-rdiv_functionality

[k1,k2:ℤ-o]. ∀[a,b:ℝ].  ((a)/k1 (b)/k2) supposing ((k1 k2 ∈ ℤand (a b))


Proof




Definitions occuring in Statement :  int-rdiv: (a)/k1 req: y real: int_nzero: -o uimplies: supposing a uall: [x:A]. B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q not: ¬A nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) true: True squash: T
Lemmas referenced :  req_functionality int-rdiv_wf rdiv_wf int-to-real_wf rneq-int int_nzero_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf equal-wf-T-base int-rdiv-req req_witness equal_wf req_wf real_wf int_nzero_wf req_weakening rdiv_functionality squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename because_Cache independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality productElimination independent_functionElimination lambdaFormation dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll baseClosed applyEquality imageElimination imageMemberEquality

Latex:
\mforall{}[k1,k2:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[a,b:\mBbbR{}].    ((a)/k1  =  (b)/k2)  supposing  ((k1  =  k2)  and  (a  =  b))



Date html generated: 2016_10_26-AM-09_09_21
Last ObjectModification: 2016_08_26-PM-01_57_13

Theory : reals


Home Index