Nuprl Lemma : rat-zero-cases
∀x:ℤ × ℕ+. ((↓r0 ≤ ratreal(x)) ∨ (↓ratreal(x) ≤ r0))
Proof
Definitions occuring in Statement : 
ratreal: ratreal(r)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
or: P ∨ Q
, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
false: False
, 
rat-rleq-cases-ext, 
exposed-it: exposed-it
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
le: A ≤ B
Lemmas referenced : 
istype-int, 
nat_plus_wf, 
rat-rleq-cases-ext, 
subtype_rel_self, 
squash_wf, 
rleq_wf, 
ratreal_wf, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
nat_plus_properties, 
intformand_wf, 
itermMultiply_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int-to-real_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rleq-int-fractions2, 
istype-false, 
rleq_transitivity, 
rleq-int-fractions3, 
rleq_functionality, 
ratreal-req, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
productIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
applyEquality, 
thin, 
instantiate, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
productEquality, 
intEquality, 
unionEquality, 
hypothesisEquality, 
independent_pairEquality, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
productElimination, 
multiplyEquality, 
setElimination, 
rename, 
inhabitedIsType, 
equalityElimination, 
because_Cache, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
promote_hyp, 
cumulativity, 
int_eqEquality, 
inlFormation_alt, 
inrFormation_alt, 
closedConclusion
Latex:
\mforall{}x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((\mdownarrow{}r0  \mleq{}  ratreal(x))  \mvee{}  (\mdownarrow{}ratreal(x)  \mleq{}  r0))
Date html generated:
2019_10_30-AM-09_29_04
Last ObjectModification:
2019_01_11-AM-11_56_49
Theory : reals
Home
Index