Nuprl Lemma : rat-rleq-cases-ext

x,y:ℤ × ℕ+.  ((↓ratreal(x) ≤ ratreal(y)) ∨ (↓ratreal(y) ≤ ratreal(x)))


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) rleq: x ≤ y nat_plus: + all: x:A. B[x] squash: T or: P ∨ Q product: x:A × B[x] int:
Definitions unfolded in proof :  member: t ∈ T le_int: i ≤j bnot: ¬bb ifthenelse: if then else fi  lt_int: i <j btrue: tt it: bfalse: ff rat-rleq-cases uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  rat-rleq-cases lifting-strict-less istype-void strict4-decide
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}x,y:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.    ((\mdownarrow{}ratreal(x)  \mleq{}  ratreal(y))  \mvee{}  (\mdownarrow{}ratreal(y)  \mleq{}  ratreal(x)))



Date html generated: 2019_10_30-AM-09_28_32
Last ObjectModification: 2019_01_11-AM-11_46_59

Theory : reals


Home Index