Nuprl Lemma : rat-nat-div_wf
∀[a:ℤ × ℕ+]. ∀[n:ℕ+].  (rat-nat-div(a;n) ∈ {r:ℤ × ℕ+| ratreal(r) = (ratreal(a))/n} )
Proof
Definitions occuring in Statement : 
rat-nat-div: rat-nat-div(x;n)
, 
ratreal: ratreal(r)
, 
int-rdiv: (a)/k1
, 
req: x = y
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-nat-div: rat-nat-div(x;n)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
mul_nat_plus, 
req_wf, 
ratreal_wf, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
nat_plus_wf, 
istype-int, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
mul_bounds_1b, 
rless_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
req_functionality, 
ratreal-req, 
req_transitivity, 
int-rdiv-req, 
rdiv_functionality, 
req_weakening, 
rmul_preserves_req, 
rmul_wf, 
rinv_wf2, 
rneq_functionality, 
rmul-int, 
rneq-int, 
int_entire_a, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
itermSubtract_wf, 
itermMultiply_wf, 
rmul_functionality, 
rinv_functionality2, 
req_inversion, 
rinv-of-rmul, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
productElimination, 
thin, 
sqequalRule, 
callbyvalueReduce, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
intEquality, 
independent_isectElimination, 
hypothesis, 
multiplyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
independent_pairEquality, 
universeIsType, 
applyEquality, 
productIsType, 
because_Cache, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
lambdaFormation_alt, 
equalityIstype, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
closedConclusion
Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (rat-nat-div(a;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  (ratreal(a))/n\}  )
Date html generated:
2019_10_30-AM-09_26_57
Last ObjectModification:
2019_01_10-PM-02_06_15
Theory : reals
Home
Index