Nuprl Lemma : rat-nat-div_wf

[a:ℤ × ℕ+]. ∀[n:ℕ+].  (rat-nat-div(a;n) ∈ {r:ℤ × ℕ+ratreal(r) (ratreal(a))/n} )


Proof




Definitions occuring in Statement :  rat-nat-div: rat-nat-div(x;n) ratreal: ratreal(r) int-rdiv: (a)/k1 req: y nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-nat-div: rat-nat-div(x;n) has-value: (a)↓ uimplies: supposing a nat_plus: + subtype_rel: A ⊆B prop: rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) nequal: a ≠ b ∈  rdiv: (x/y) req_int_terms: t1 ≡ t2
Lemmas referenced :  value-type-has-value int-value-type mul_nat_plus req_wf ratreal_wf int-rdiv_wf nat_plus_inc_int_nzero nat_plus_wf istype-int rdiv_wf int-to-real_wf rless-int mul_bounds_1b rless_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf req_functionality ratreal-req req_transitivity int-rdiv-req rdiv_functionality req_weakening rmul_preserves_req rmul_wf rinv_wf2 rneq_functionality rmul-int rneq-int int_entire_a intformeq_wf int_formula_prop_eq_lemma int_subtype_base itermSubtract_wf itermMultiply_wf rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin sqequalRule callbyvalueReduce introduction extract_by_obid sqequalHypSubstitution isectElimination intEquality independent_isectElimination hypothesis multiplyEquality setElimination rename hypothesisEquality dependent_set_memberEquality_alt independent_pairEquality universeIsType applyEquality productIsType because_Cache inrFormation_alt dependent_functionElimination independent_functionElimination natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation lambdaFormation_alt equalityIstype inhabitedIsType baseClosed sqequalBase equalitySymmetry closedConclusion

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (rat-nat-div(a;n)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  (ratreal(a))/n\}  )



Date html generated: 2019_10_30-AM-09_26_57
Last ObjectModification: 2019_01_10-PM-02_06_15

Theory : reals


Home Index