Nuprl Lemma : ratbound_wf

[x:ℤ × ℕ+]. (ratbound(x) ∈ {m:ℕ+|ratreal(x)| ≤ r(m)} )


Proof




Definitions occuring in Statement :  ratbound: ratbound(x) ratreal: ratreal(r) rleq: x ≤ y rabs: |x| int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ratbound: ratbound(x) has-value: (a)↓ uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  nat_plus: + not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b squash: T less_than': less_than'(a;b) true: True bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b decidable: Dec(P) le: A ≤ B rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) req_int_terms: t1 ≡ t2 ge: i ≥ 
Lemmas referenced :  div_bounds_1 absval_wf value-type-has-value nat_wf set-value-type le_wf int-value-type nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf int_subtype_base eq_int_wf eqtt_to_assert assert_of_eq_int istype-less_than eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int nequal-le-implies decidable__lt intformnot_wf intformle_wf int_formula_prop_not_lemma int_formula_prop_le_lemma itermAdd_wf int_term_value_add_lemma rleq_wf rabs_wf ratreal_wf int-to-real_wf nat_plus_wf rdiv_wf rless-int rless_wf rleq_functionality rabs_functionality ratreal-req req_weakening rabs-of-nonneg rleq-int decidable__le rneq_wf squash_wf true_wf real_wf rabs-int iff_weakening_equal absval_pos nat_plus_subtype_nat rneq_functionality rabs-rdiv subtype_rel_self rmul_preserves_rleq rmul_wf rinv_wf2 itermSubtract_wf itermMultiply_wf rdiv_functionality req_transitivity rmul_functionality rmul-rinv rmul-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma nat_properties div_rem_sum nat_plus_inc_int_nzero istype-le rem_bounds_1 int_term_value_mul_lemma set_subtype_base decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule callbyvalueReduce independent_isectElimination intEquality lambdaEquality_alt natural_numberEquality inhabitedIsType because_Cache remainderEquality setElimination rename lambdaFormation_alt approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType equalityIstype applyEquality baseClosed sqequalBase equalitySymmetry divideEquality equalityTransitivity closedConclusion unionElimination equalityElimination int_eqReduceTrueSq dependent_set_memberEquality_alt imageMemberEquality promote_hyp instantiate cumulativity int_eqReduceFalseSq addEquality independent_pairEquality productIsType inrFormation_alt applyLambdaEquality imageElimination universeEquality multiplyEquality

Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (ratbound(x)  \mmember{}  \{m:\mBbbN{}\msupplus{}|  |ratreal(x)|  \mleq{}  r(m)\}  )



Date html generated: 2019_10_30-AM-09_33_22
Last ObjectModification: 2019_01_11-PM-01_23_12

Theory : reals


Home Index