Nuprl Lemma : ratbound_wf
∀[x:ℤ × ℕ+]. (ratbound(x) ∈ {m:ℕ+| |ratreal(x)| ≤ r(m)} )
Proof
Definitions occuring in Statement : 
ratbound: ratbound(x)
, 
ratreal: ratreal(r)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
ratbound: ratbound(x)
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
nat_plus: ℕ+
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
decidable: Dec(P)
, 
le: A ≤ B
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
req_int_terms: t1 ≡ t2
, 
ge: i ≥ j 
Lemmas referenced : 
div_bounds_1, 
absval_wf, 
value-type-has-value, 
nat_wf, 
set-value-type, 
le_wf, 
int-value-type, 
nat_plus_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
int_subtype_base, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
istype-less_than, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nequal-le-implies, 
decidable__lt, 
intformnot_wf, 
intformle_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
rleq_wf, 
rabs_wf, 
ratreal_wf, 
int-to-real_wf, 
nat_plus_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
rleq_functionality, 
rabs_functionality, 
ratreal-req, 
req_weakening, 
rabs-of-nonneg, 
rleq-int, 
decidable__le, 
rneq_wf, 
squash_wf, 
true_wf, 
real_wf, 
rabs-int, 
iff_weakening_equal, 
absval_pos, 
nat_plus_subtype_nat, 
rneq_functionality, 
rabs-rdiv, 
subtype_rel_self, 
rmul_preserves_rleq, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
itermMultiply_wf, 
rdiv_functionality, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
rmul-int, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
nat_properties, 
div_rem_sum, 
nat_plus_inc_int_nzero, 
istype-le, 
rem_bounds_1, 
int_term_value_mul_lemma, 
set_subtype_base, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
callbyvalueReduce, 
independent_isectElimination, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
inhabitedIsType, 
because_Cache, 
remainderEquality, 
setElimination, 
rename, 
lambdaFormation_alt, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
equalityIstype, 
applyEquality, 
baseClosed, 
sqequalBase, 
equalitySymmetry, 
divideEquality, 
equalityTransitivity, 
closedConclusion, 
unionElimination, 
equalityElimination, 
int_eqReduceTrueSq, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
int_eqReduceFalseSq, 
addEquality, 
independent_pairEquality, 
productIsType, 
inrFormation_alt, 
applyLambdaEquality, 
imageElimination, 
universeEquality, 
multiplyEquality
Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (ratbound(x)  \mmember{}  \{m:\mBbbN{}\msupplus{}|  |ratreal(x)|  \mleq{}  r(m)\}  )
Date html generated:
2019_10_30-AM-09_33_22
Last ObjectModification:
2019_01_11-PM-01_23_12
Theory : reals
Home
Index