Nuprl Lemma : rabs-rdiv
∀x,y:ℝ. (y ≠ r0
⇒ (|(x/y)| = (|x|/|y|)))
Proof
Definitions occuring in Statement :
rdiv: (x/y)
,
rneq: x ≠ y
,
rabs: |x|
,
req: x = y
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
natural_number: $n
Definitions unfolded in proof :
rdiv: (x/y)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
uimplies: b supposing a
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
rabs-neq-zero,
rneq_wf,
int-to-real_wf,
real_wf,
rabs_wf,
rmul_wf,
rinv_wf2,
rless_wf,
req_weakening,
req_functionality,
req_transitivity,
rabs-rmul,
rmul_functionality,
rabs-rinv
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
lambdaFormation,
cut,
lemma_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
isectElimination,
natural_numberEquality,
inrFormation,
because_Cache,
independent_isectElimination,
productElimination
Latex:
\mforall{}x,y:\mBbbR{}. (y \mneq{} r0 {}\mRightarrow{} (|(x/y)| = (|x|/|y|)))
Date html generated:
2016_05_18-AM-07_26_56
Last ObjectModification:
2015_12_28-AM-00_50_22
Theory : reals
Home
Index