Nuprl Lemma : rleq-ratbound

[x:ℤ × ℕ+]. (|ratreal(x)| ≤ r(ratbound(x)))


Proof




Definitions occuring in Statement :  ratbound: ratbound(x) ratreal: ratreal(r) rleq: x ≤ y rabs: |x| int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q nat_plus: + sq_stable: SqStable(P) squash: T
Lemmas referenced :  sq_stable__rleq ratbound_wf rabs_wf ratreal_wf int-to-real_wf istype-int nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis inhabitedIsType lambdaFormation_alt equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination because_Cache setElimination rename sqequalRule imageMemberEquality baseClosed imageElimination productIsType universeIsType

Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (|ratreal(x)|  \mleq{}  r(ratbound(x)))



Date html generated: 2019_10_30-AM-09_33_54
Last ObjectModification: 2019_01_11-PM-01_29_00

Theory : reals


Home Index