Nuprl Lemma : rleq-ratbound
∀[x:ℤ × ℕ+]. (|ratreal(x)| ≤ r(ratbound(x)))
Proof
Definitions occuring in Statement : 
ratbound: ratbound(x)
, 
ratreal: ratreal(r)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
nat_plus: ℕ+
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
sq_stable__rleq, 
ratbound_wf, 
rabs_wf, 
ratreal_wf, 
int-to-real_wf, 
istype-int, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
setElimination, 
rename, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productIsType, 
universeIsType
Latex:
\mforall{}[x:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  (|ratreal(x)|  \mleq{}  r(ratbound(x)))
Date html generated:
2019_10_30-AM-09_33_54
Last ObjectModification:
2019_01_11-PM-01_29_00
Theory : reals
Home
Index