Nuprl Lemma : const-rmul-limit-with-bound

x:ℕ ⟶ ℝ. ∀a,c:ℝ. ∀m:ℕ+.  ((|c| ≤ r(m))  lim n→∞.x[n]  lim n→∞.c x[n] a)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rleq: x ≤ y rabs: |x| rmul: b int-to-real: r(n) real: nat_plus: + nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + sq_exists: x:{A| B[x]} nat: uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q) cand: c∧ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rless: x < y rdiv: (x/y)
Lemmas referenced :  converges-to_wf nat_wf rleq_wf rabs_wf int-to-real_wf nat_plus_wf real_wf mul_nat_plus le_wf all_wf rsub_wf rmul_wf rdiv_wf rless-int nat_properties nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_term_polynomial itermSubtract_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 mul_bounds_1b zero-rleq-rabs rleq-int-fractions2 decidable__le intformle_wf int_formula_prop_le_lemma int_term_value_mul_lemma uimplies_transitivity rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 rleq_weakening_equal uiff_transitivity rleq_functionality rabs_functionality req_weakening rabs-rmul rmul-is-positive rmul_functionality rdiv_functionality req_inversion rmul-int rinv_wf2 req_transitivity rinv-of-rmul rmul-rinv3 rinv-as-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution because_Cache cut introduction extract_by_obid isectElimination thin sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality hypothesis setElimination rename functionEquality dependent_functionElimination dependent_set_memberEquality independent_functionElimination natural_numberEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll multiplyEquality inlFormation productEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,c:\mBbbR{}.  \mforall{}m:\mBbbN{}\msupplus{}.    ((|c|  \mleq{}  r(m))  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.c  *  x[n]  =  c  *  a)



Date html generated: 2017_10_03-AM-09_05_27
Last ObjectModification: 2017_07_28-AM-07_41_36

Theory : reals


Home Index