Nuprl Lemma : ratreal-rat-nat-div

[a:ℤ × ℕ+]. ∀[n:ℕ+].  (ratreal(rat-nat-div(a;n)) (ratreal(a))/n)


Proof




Definitions occuring in Statement :  rat-nat-div: rat-nat-div(x;n) ratreal: ratreal(r) int-rdiv: (a)/k1 req: y nat_plus: + uall: [x:A]. B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q all: x:A. B[x] squash: T
Lemmas referenced :  sq_stable__req ratreal_wf rat-nat-div_wf int-rdiv_wf nat_plus_inc_int_nzero nat_plus_wf istype-int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality_alt setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry sqequalRule independent_functionElimination lambdaFormation_alt because_Cache imageMemberEquality baseClosed imageElimination equalityIstype dependent_functionElimination universeIsType productIsType

Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (ratreal(rat-nat-div(a;n))  =  (ratreal(a))/n)



Date html generated: 2019_10_30-AM-09_27_28
Last ObjectModification: 2019_01_11-AM-10_10_57

Theory : reals


Home Index