Nuprl Lemma : ratreal-rat-nat-div
∀[a:ℤ × ℕ+]. ∀[n:ℕ+].  (ratreal(rat-nat-div(a;n)) = (ratreal(a))/n)
Proof
Definitions occuring in Statement : 
rat-nat-div: rat-nat-div(x;n)
, 
ratreal: ratreal(r)
, 
int-rdiv: (a)/k1
, 
req: x = y
, 
nat_plus: ℕ+
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
squash: ↓T
Lemmas referenced : 
sq_stable__req, 
ratreal_wf, 
rat-nat-div_wf, 
int-rdiv_wf, 
nat_plus_inc_int_nzero, 
nat_plus_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
independent_functionElimination, 
lambdaFormation_alt, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype, 
dependent_functionElimination, 
universeIsType, 
productIsType
Latex:
\mforall{}[a:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (ratreal(rat-nat-div(a;n))  =  (ratreal(a))/n)
Date html generated:
2019_10_30-AM-09_27_28
Last ObjectModification:
2019_01_11-AM-10_10_57
Theory : reals
Home
Index