Nuprl Lemma : rinv-exp-converges-ext

M:ℕ+. ∀N:{2...}.  lim n→∞.(r1/r(M N^n)) r0


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rdiv: (x/y) int-to-real: r(n) exp: i^n int_upper: {i...} nat_plus: + all: x:A. B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T rinv-exp-converges
Lemmas referenced :  rinv-exp-converges
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}N:\{2...\}.    lim  n\mrightarrow{}\minfty{}.(r1/r(M  *  N\^{}n))  =  r0



Date html generated: 2016_10_26-AM-09_16_36
Last ObjectModification: 2016_09_04-PM-02_07_00

Theory : reals


Home Index