Nuprl Lemma : rinv-exp-converges-ext
∀M:ℕ+. ∀N:{2...}.  lim n→∞.(r1/r(M * N^n)) = r0
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y, 
rdiv: (x/y), 
int-to-real: r(n), 
exp: i^n, 
int_upper: {i...}, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
multiply: n * m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
rinv-exp-converges
Lemmas referenced : 
rinv-exp-converges
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}N:\{2...\}.    lim  n\mrightarrow{}\minfty{}.(r1/r(M  *  N\^{}n))  =  r0
 Date html generated: 
2016_10_26-AM-09_16_36
 Last ObjectModification: 
2016_09_04-PM-02_07_00
Theory : reals
Home
Index