Nuprl Lemma : rinv-exp-converges

M:ℕ+. ∀N:{2...}.  lim n→∞.(r1/r(M N^n)) r0


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rdiv: (x/y) int-to-real: r(n) exp: i^n int_upper: {i...} nat_plus: + all: x:A. B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] converges-to: lim n→∞.x[n] y member: t ∈ T subtype_rel: A ⊆B sq_exists: x:{A| B[x]} uall: [x:A]. B[x] nat_plus: + int_upper: {i...} prop: implies:  Q nat: so_lambda: λ2x.t[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B decidable: Dec(P) not: ¬A false: False uiff: uiff(P;Q) top: Top less_than': less_than'(a;b) true: True ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] so_apply: x[s] rless: x < y rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 rev_uimplies: rev_uimplies(P;Q) sq_stable: SqStable(P) squash: T real: less_than: a < b
Lemmas referenced :  exp-ratio-property2 nat_plus_subtype_nat exp-ratio_wf2 nat_wf less_than_wf exp_wf2 le_wf all_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int mul_bounds_1b exp_wf_nat_plus decidable__lt false_wf not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel rless_wf nat_properties nat_plus_properties int_upper_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf nat_plus_wf int_upper_wf rmul_wf rinv_wf2 uiff_transitivity rleq_functionality rabs_functionality real_term_polynomial itermSubtract_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rinv-as-rdiv le_weakening le_weakening2 le_functionality sq_stable__le equal_wf int_term_value_subtract_lemma int_formula_prop_le_lemma intformle_wf decidable__le real_wf sq_stable__less_than subtract_wf trivial-int-eq1 iff_weakening_equal exp_add true_wf squash_wf exp_preserves_le int_term_value_mul_lemma multiply-is-int-iff int_upper_subtype_nat exp_wf4 mul_preserves_le rleq-int-fractions2 int_subtype_base less_than_transitivity1 rleq-int-fractions rabs-of-nonneg req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule dependent_set_memberFormation lambdaEquality setElimination rename setEquality isectElimination multiplyEquality because_Cache functionEquality natural_numberEquality independent_isectElimination inrFormation productElimination independent_functionElimination dependent_set_memberEquality unionElimination independent_pairFormation voidElimination isect_memberEquality voidEquality intEquality dependent_pairFormation int_eqEquality computeAll equalitySymmetry equalityTransitivity imageElimination baseClosed imageMemberEquality applyLambdaEquality addEquality universeEquality closedConclusion baseApply promote_hyp pointwiseFunctionality

Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}N:\{2...\}.    lim  n\mrightarrow{}\minfty{}.(r1/r(M  *  N\^{}n))  =  r0



Date html generated: 2017_10_03-AM-08_54_37
Last ObjectModification: 2017_07_28-AM-07_36_28

Theory : reals


Home Index