Nuprl Lemma : rinv-exp-converges
∀M:ℕ+. ∀N:{2...}.  lim n→∞.(r1/r(M * N^n)) = r0
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rdiv: (x/y)
, 
int-to-real: r(n)
, 
exp: i^n
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
converges-to: lim n→∞.x[n] = y
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
sq_exists: ∃x:{A| B[x]}
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
int_upper: {i...}
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
uiff: uiff(P;Q)
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
rless: x < y
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rev_uimplies: rev_uimplies(P;Q)
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
real: ℝ
, 
less_than: a < b
Lemmas referenced : 
exp-ratio-property2, 
nat_plus_subtype_nat, 
exp-ratio_wf2, 
nat_wf, 
less_than_wf, 
exp_wf2, 
le_wf, 
all_wf, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
mul_bounds_1b, 
exp_wf_nat_plus, 
decidable__lt, 
false_wf, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
zero-add, 
le-add-cancel, 
rless_wf, 
nat_properties, 
nat_plus_properties, 
int_upper_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
nat_plus_wf, 
int_upper_wf, 
rmul_wf, 
rinv_wf2, 
uiff_transitivity, 
rleq_functionality, 
rabs_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rinv-as-rdiv, 
le_weakening, 
le_weakening2, 
le_functionality, 
sq_stable__le, 
equal_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
intformle_wf, 
decidable__le, 
real_wf, 
sq_stable__less_than, 
subtract_wf, 
trivial-int-eq1, 
iff_weakening_equal, 
exp_add, 
true_wf, 
squash_wf, 
exp_preserves_le, 
int_term_value_mul_lemma, 
multiply-is-int-iff, 
int_upper_subtype_nat, 
exp_wf4, 
mul_preserves_le, 
rleq-int-fractions2, 
int_subtype_base, 
less_than_transitivity1, 
rleq-int-fractions, 
rabs-of-nonneg, 
req_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
dependent_set_memberFormation, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
isectElimination, 
multiplyEquality, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
unionElimination, 
independent_pairFormation, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
intEquality, 
dependent_pairFormation, 
int_eqEquality, 
computeAll, 
equalitySymmetry, 
equalityTransitivity, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
applyLambdaEquality, 
addEquality, 
universeEquality, 
closedConclusion, 
baseApply, 
promote_hyp, 
pointwiseFunctionality
Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}N:\{2...\}.    lim  n\mrightarrow{}\minfty{}.(r1/r(M  *  N\^{}n))  =  r0
Date html generated:
2017_10_03-AM-08_54_37
Last ObjectModification:
2017_07_28-AM-07_36_28
Theory : reals
Home
Index