Nuprl Lemma : exp-ratio-property2
∀M:ℕ+. ∀b:{2...}. ∀k:ℕ.  (exp-ratio(1;b;0;k;M) ∈ {n:ℕ| k < M * b^n} )
Proof
Definitions occuring in Statement : 
exp-ratio: exp-ratio(a;b;n;p;q)
, 
exp: i^n
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
exp-ratio_wf2, 
nat_wf, 
int_upper_wf, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
natural_numberEquality
Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}b:\{2...\}.  \mforall{}k:\mBbbN{}.    (exp-ratio(1;b;0;k;M)  \mmember{}  \{n:\mBbbN{}|  k  <  M  *  b\^{}n\}  )
Date html generated:
2016_10_25-AM-10_52_01
Last ObjectModification:
2016_09_04-PM-05_55_32
Theory : general
Home
Index