Nuprl Lemma : exp-ratio-property2

M:ℕ+. ∀b:{2...}. ∀k:ℕ.  (exp-ratio(1;b;0;k;M) ∈ {n:ℕk < b^n} )


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat_plus: + nat: less_than: a < b all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  exp-ratio_wf2 nat_wf int_upper_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination natural_numberEquality

Latex:
\mforall{}M:\mBbbN{}\msupplus{}.  \mforall{}b:\{2...\}.  \mforall{}k:\mBbbN{}.    (exp-ratio(1;b;0;k;M)  \mmember{}  \{n:\mBbbN{}|  k  <  M  *  b\^{}n\}  )



Date html generated: 2016_10_25-AM-10_52_01
Last ObjectModification: 2016_09_04-PM-05_55_32

Theory : general


Home Index