Nuprl Lemma : ratadd_wf

[a,b:ℤ × ℕ+].  (ratadd(a;b) ∈ {r:ℤ × ℕ+ratreal(r) (ratreal(a) ratreal(b))} )


Proof




Definitions occuring in Statement :  ratadd: ratadd(x;y) ratreal: ratreal(r) req: y radd: b nat_plus: + uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ratadd: ratadd(x;y) nat_plus: + all: x:A. B[x] implies:  Q and: P ∧ Q exists: x:A. B[x] has-value: (a)↓ uimplies: supposing a subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top prop: squash: T nequal: a ≠ b ∈  true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o sq_type: SQType(T) so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  better-gcd-gcd gcd-properties gcd_wf value-type-has-value int-value-type gcd-positive nat_plus_subtype_nat nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__le intformle_wf int_formula_prop_le_lemma subtype_base_sq int_subtype_base equal_wf squash_wf true_wf istype-universe intformeq_wf int_formula_prop_eq_lemma subtype_rel_self iff_weakening_equal div-cancel nequal_wf itermMultiply_wf int_term_value_mul_lemma mul_positive_iff set_subtype_base less_than_wf nat_plus_wf mul_nat_plus istype-less_than req_functionality ratreal_wf rdiv_wf int-to-real_wf rless-int mul_bounds_1b rless_wf radd_wf ratreal-req radd_functionality req_wf mul_nzero nat_plus_inc_int_nzero decidable__equal_int req-int-fractions uiff_transitivity rdiv_functionality req_inversion radd-int req_weakening radd-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut productElimination thin sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination setElimination rename hypothesisEquality hypothesis dependent_functionElimination because_Cache inhabitedIsType lambdaFormation_alt callbyvalueReduce intEquality independent_isectElimination applyEquality natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation universeIsType instantiate cumulativity imageElimination equalityTransitivity equalitySymmetry universeEquality divideEquality equalityIstype baseClosed sqequalBase imageMemberEquality dependent_set_memberEquality_alt addEquality multiplyEquality productIsType baseApply closedConclusion independent_pairEquality inrFormation_alt promote_hyp

Latex:
\mforall{}[a,b:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}].    (ratadd(a;b)  \mmember{}  \{r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}|  ratreal(r)  =  (ratreal(a)  +  ratreal(b))\}  )



Date html generated: 2019_10_30-AM-09_18_01
Last ObjectModification: 2019_01_10-PM-02_51_38

Theory : reals


Home Index