Nuprl Lemma : mul_positive_iff

a,b:ℤ.  (0 < ⇐⇒ (0 < a ∧ 0 < b) ∨ (a < 0 ∧ b < 0))


Proof




Definitions occuring in Statement :  less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q multiply: m natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q decidable: Dec(P) or: P ∨ Q cand: c∧ B not: ¬A false: False nat_plus: + uimplies: supposing a uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True sq_type: SQType(T) guard: {T}
Lemmas referenced :  less_than_wf or_wf decidable__lt less-trichotomy mul_preserves_lt less-iff-le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top mul-commutes zero-mul add_functionality_wrt_le add-associates add-zero add-commutes le-add-cancel subtype_base_sq int_subtype_base minus-zero mul_positive add_functionality_wrt_lt le_reflexive add-inverse mul-associates mul-swap one-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality multiplyEquality hypothesisEquality hypothesis productEquality intEquality dependent_functionElimination unionElimination because_Cache inlFormation independent_functionElimination voidElimination dependent_set_memberEquality independent_isectElimination productElimination addEquality sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality minusEquality instantiate cumulativity equalityTransitivity equalitySymmetry inrFormation

Latex:
\mforall{}a,b:\mBbbZ{}.    (0  <  a  *  b  \mLeftarrow{}{}\mRightarrow{}  (0  <  a  \mwedge{}  0  <  b)  \mvee{}  (a  <  0  \mwedge{}  b  <  0))



Date html generated: 2019_06_20-AM-11_23_27
Last ObjectModification: 2018_08_20-AM-11_00_40

Theory : arithmetic


Home Index