Nuprl Lemma : mul_positive_iff
∀a,b:ℤ.  (0 < a * b 
⇐⇒ (0 < a ∧ 0 < b) ∨ (a < 0 ∧ b < 0))
Proof
Definitions occuring in Statement : 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
multiply: n * m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
not: ¬A
, 
false: False
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
less_than_wf, 
or_wf, 
decidable__lt, 
less-trichotomy, 
mul_preserves_lt, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
mul-commutes, 
zero-mul, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
add-commutes, 
le-add-cancel, 
subtype_base_sq, 
int_subtype_base, 
minus-zero, 
mul_positive, 
add_functionality_wrt_lt, 
le_reflexive, 
add-inverse, 
mul-associates, 
mul-swap, 
one-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
multiplyEquality, 
hypothesisEquality, 
hypothesis, 
productEquality, 
intEquality, 
dependent_functionElimination, 
unionElimination, 
because_Cache, 
inlFormation, 
independent_functionElimination, 
voidElimination, 
dependent_set_memberEquality, 
independent_isectElimination, 
productElimination, 
addEquality, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
instantiate, 
cumulativity, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation
Latex:
\mforall{}a,b:\mBbbZ{}.    (0  <  a  *  b  \mLeftarrow{}{}\mRightarrow{}  (0  <  a  \mwedge{}  0  <  b)  \mvee{}  (a  <  0  \mwedge{}  b  <  0))
Date html generated:
2019_06_20-AM-11_23_27
Last ObjectModification:
2018_08_20-AM-11_00_40
Theory : arithmetic
Home
Index