Nuprl Lemma : gcd-positive

[y,x:ℕ].  (0 < gcd(x;y)) supposing ((0 ≤ y) and 0 < x)


Proof




Definitions occuring in Statement :  gcd: gcd(a;b) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) gcd: gcd(a;b) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q int_nzero: -o nequal: a ≠ b ∈  nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than member-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self eq_int_wf uiff_transitivity equal-wf-base bool_wf le_wf assert_wf eqtt_to_assert assert_of_eq_int iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot istype-assert remainder_wfa nequal_wf rem_bounds_1 gcd_wf itermAdd_wf int_term_value_add_lemma istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin Error :lambdaFormation_alt,  extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation Error :universeIsType,  productElimination Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  because_Cache unionElimination applyEquality instantiate equalityTransitivity equalitySymmetry applyLambdaEquality Error :dependent_set_memberEquality_alt,  Error :productIsType,  hypothesis_subsumption equalityElimination baseApply closedConclusion baseClosed intEquality Error :equalityIstype,  sqequalBase Error :functionIsType,  addEquality

Latex:
\mforall{}[y,x:\mBbbN{}].    (0  <  gcd(x;y))  supposing  ((0  \mleq{}  y)  and  0  <  x)



Date html generated: 2019_06_20-PM-02_26_59
Last ObjectModification: 2019_03_06-AM-11_06_24

Theory : num_thy_1


Home Index