Step * 2 1 of Lemma rational-IVT-1

.....antecedent..... 
1. : ℤ × ℕ+
2. : ℤ × ℕ+
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ
5. [%] (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝx ∈ [ratreal(a), ratreal(b)]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [ratreal(a), ratreal(b)])  (g[ratreal(r)] ratreal(f[r]))))
6. : ℕ ⟶ (ℤ × ℕ+ × ℤ × ℕ+)
7. ∀i:ℕ
     ((ratreal(fst((s i))) ∈ [ratreal(a), ratreal(b)])
     ∧ (ratreal(snd((s i))) ∈ [ratreal(a), ratreal(b)])
     ∧ (ratreal(fst((s i))) ≤ ratreal(fst((s (i 1)))))
     ∧ (ratreal(fst((s i))) ≤ ratreal(snd((s i))))
     ∧ (ratreal(snd((s (i 1)))) ≤ ratreal(snd((s i))))
     ∧ (g[ratreal(fst((s i)))] ≤ r0)
     ∧ (r0 ≤ g[ratreal(snd((s i)))])
     ∧ ((ratreal(snd((s i))) ratreal(fst((s i)))) (rinv(r(2))^i (ratreal(b) ratreal(a)))))
⊢ lim n→∞.rinv(r(2))^n (ratreal(b) ratreal(a)) r0
BY
(Assert lim n→∞.rinv(r(2))^n r0 BY
         ((InstLemma `rinv-exp-converges-ext` [⌜1⌝;⌜2⌝]⋅ THENA Auto)
          THEN MoveToConcl (-1)
          THEN BLemma `converges-to_functionality`
          THEN Auto
          THEN RWO "rinv-as-rdiv" 0
          THEN Auto
          THEN (Assert r0 < r(2)^n BY
                      (BLemma  `rnexp-positive` THEN Auto))
          THEN RWO "rnexp-rdiv<0
          THEN Auto
          THEN BLemma `rdiv_functionality`
          THEN Auto
          THEN RWO  "rnexp-one rnexp-int" 0
          THEN Auto)) }

1
1. : ℤ × ℕ+
2. : ℤ × ℕ+
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [ratreal(a), ratreal(b)]}  ⟶ ℝ
5. [%] (ratreal(a) ≤ ratreal(b))
∧ (ratreal(f[a]) ≤ r0)
∧ (r0 ≤ ratreal(f[b]))
∧ (∀x,y:{x:ℝx ∈ [ratreal(a), ratreal(b)]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [ratreal(a), ratreal(b)])  (g[ratreal(r)] ratreal(f[r]))))
6. : ℕ ⟶ (ℤ × ℕ+ × ℤ × ℕ+)
7. ∀i:ℕ
     ((ratreal(fst((s i))) ∈ [ratreal(a), ratreal(b)])
     ∧ (ratreal(snd((s i))) ∈ [ratreal(a), ratreal(b)])
     ∧ (ratreal(fst((s i))) ≤ ratreal(fst((s (i 1)))))
     ∧ (ratreal(fst((s i))) ≤ ratreal(snd((s i))))
     ∧ (ratreal(snd((s (i 1)))) ≤ ratreal(snd((s i))))
     ∧ (g[ratreal(fst((s i)))] ≤ r0)
     ∧ (r0 ≤ g[ratreal(snd((s i)))])
     ∧ ((ratreal(snd((s i))) ratreal(fst((s i)))) (rinv(r(2))^i (ratreal(b) ratreal(a)))))
8. lim n→∞.rinv(r(2))^n r0
⊢ lim n→∞.rinv(r(2))^n (ratreal(b) ratreal(a)) r0


Latex:


Latex:
.....antecedent..... 
1.  a  :  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}
2.  b  :  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}
3.  f  :  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
4.  [g]  :  \{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}    {}\mrightarrow{}  \mBbbR{}
5.  [\%]  :  (ratreal(a)  \mleq{}  ratreal(b))
\mwedge{}  (ratreal(f[a])  \mleq{}  r0)
\mwedge{}  (r0  \mleq{}  ratreal(f[b]))
\mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [ratreal(a),  ratreal(b)]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
\mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [ratreal(a),  ratreal(b)])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))
6.  s  :  \mBbbN{}  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}  \mtimes{}  \mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
7.  \mforall{}i:\mBbbN{}
          ((ratreal(fst((s  i)))  \mmember{}  [ratreal(a),  ratreal(b)])
          \mwedge{}  (ratreal(snd((s  i)))  \mmember{}  [ratreal(a),  ratreal(b)])
          \mwedge{}  (ratreal(fst((s  i)))  \mleq{}  ratreal(fst((s  (i  +  1)))))
          \mwedge{}  (ratreal(fst((s  i)))  \mleq{}  ratreal(snd((s  i))))
          \mwedge{}  (ratreal(snd((s  (i  +  1))))  \mleq{}  ratreal(snd((s  i))))
          \mwedge{}  (g[ratreal(fst((s  i)))]  \mleq{}  r0)
          \mwedge{}  (r0  \mleq{}  g[ratreal(snd((s  i)))])
          \mwedge{}  ((ratreal(snd((s  i)))  -  ratreal(fst((s  i))))  =  (rinv(r(2))\^{}i  *  (ratreal(b)  -  ratreal(a)))))
\mvdash{}  lim  n\mrightarrow{}\minfty{}.rinv(r(2))\^{}n  *  (ratreal(b)  -  ratreal(a))  =  r0


By


Latex:
(Assert  lim  n\mrightarrow{}\minfty{}.rinv(r(2))\^{}n  =  r0  BY
              ((InstLemma  `rinv-exp-converges-ext`  [\mkleeneopen{}1\mkleeneclose{};\mkleeneopen{}2\mkleeneclose{}]\mcdot{}  THENA  Auto)
                THEN  MoveToConcl  (-1)
                THEN  BLemma  `converges-to\_functionality`
                THEN  Auto
                THEN  RWO  "rinv-as-rdiv"  0
                THEN  Auto
                THEN  (Assert  r0  <  r(2)\^{}n  BY
                                        (BLemma    `rnexp-positive`  THEN  Auto))
                THEN  RWO  "rnexp-rdiv<"  0
                THEN  Auto
                THEN  BLemma  `rdiv\_functionality`
                THEN  Auto
                THEN  RWO    "rnexp-one  rnexp-int"  0
                THEN  Auto))




Home Index