Step
*
1
of Lemma
rational-approx-property-alt2
1. x : ℝ
2. n : ℕ+
3. |r(x n) - r(2 * n) * x| ≤ r(2)
4. r(x n) = ((r(x n) - r(2 * n) * x) + (r(2 * n) * x))
⊢ |(r(x n) - r(2 * n) * x) + (r(2 * n) * x)| ≤ ((r(2 * n) * |x|) + r(2))
BY
{ ((RWO "r-triangle-inequality" 0 THENA Auto)
THEN (RWO "3" 0 THENA Auto)
THEN (RWO "rabs-rmul" 0 THENA Auto)
THEN (Assert |r(2 * n)| = r(2 * n) BY
(RWO "rabs-of-nonneg" 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto) }
Latex:
Latex:
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. |r(x n) - r(2 * n) * x| \mleq{} r(2)
4. r(x n) = ((r(x n) - r(2 * n) * x) + (r(2 * n) * x))
\mvdash{} |(r(x n) - r(2 * n) * x) + (r(2 * n) * x)| \mleq{} ((r(2 * n) * |x|) + r(2))
By
Latex:
((RWO "r-triangle-inequality" 0 THENA Auto)
THEN (RWO "3" 0 THENA Auto)
THEN (RWO "rabs-rmul" 0 THENA Auto)
THEN (Assert |r(2 * n)| = r(2 * n) BY
(RWO "rabs-of-nonneg" 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto)
Home
Index