Nuprl Lemma : rational-approx-property-alt2
∀x:ℝ. ∀n:ℕ+.  (|r(x n)| ≤ ((r(2 * n) * |x|) + r(2)))
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rabs: |x|
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
multiply: n * m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
real: ℝ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
req_int_terms: t1 ≡ t2
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
rge: x ≥ y
, 
guard: {T}
Lemmas referenced : 
rational-approx-property-alt, 
nat_plus_wf, 
real_wf, 
rabs_wf, 
rsub_wf, 
rmul_wf, 
int-to-real_wf, 
radd_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
rleq_functionality, 
rabs-difference-symmetry, 
req_weakening, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
istype-void, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
rabs_functionality, 
rleq-int, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
rleq_weakening, 
rleq_functionality_wrt_implies, 
r-triangle-inequality, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
radd_functionality, 
rabs-rmul, 
req_functionality, 
rabs-of-nonneg, 
rmul_functionality
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
universeIsType, 
isectElimination, 
multiplyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
voidElimination, 
independent_functionElimination, 
unionElimination, 
dependent_pairFormation_alt, 
independent_pairFormation
Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (|r(x  n)|  \mleq{}  ((r(2  *  n)  *  |x|)  +  r(2)))
Date html generated:
2019_10_29-AM-10_00_57
Last ObjectModification:
2019_02_14-PM-07_13_43
Theory : reals
Home
Index