Nuprl Lemma : rational-approx-property-alt2

x:ℝ. ∀n:ℕ+.  (|r(x n)| ≤ ((r(2 n) |x|) r(2)))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rmul: b radd: b int-to-real: r(n) real: nat_plus: + all: x:A. B[x] apply: a multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + real: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a req_int_terms: t1 ≡ t2 false: False implies:  Q not: ¬A top: Top rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: rge: x ≥ y guard: {T}
Lemmas referenced :  rational-approx-property-alt nat_plus_wf real_wf rabs_wf rsub_wf rmul_wf int-to-real_wf radd_wf itermSubtract_wf itermVar_wf itermAdd_wf itermMultiply_wf req-iff-rsub-is-0 rleq_functionality rabs-difference-symmetry req_weakening real_polynomial_null istype-int real_term_value_sub_lemma istype-void real_term_value_var_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_const_lemma rabs_functionality rleq-int nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf rleq_weakening rleq_functionality_wrt_implies r-triangle-inequality rleq_weakening_equal radd_functionality_wrt_rleq radd_functionality rabs-rmul req_functionality rabs-of-nonneg rmul_functionality
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality universeIsType isectElimination multiplyEquality natural_numberEquality setElimination rename applyEquality because_Cache productElimination independent_isectElimination sqequalRule approximateComputation lambdaEquality_alt int_eqEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt voidElimination independent_functionElimination unionElimination dependent_pairFormation_alt independent_pairFormation

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}n:\mBbbN{}\msupplus{}.    (|r(x  n)|  \mleq{}  ((r(2  *  n)  *  |x|)  +  r(2)))



Date html generated: 2019_10_29-AM-10_00_57
Last ObjectModification: 2019_02_14-PM-07_13_43

Theory : reals


Home Index