Nuprl Lemma : rational-approx-property-alt
∀x:ℝ. ∀n:ℕ+. (|(r(2 * n) * x) - r(x n)| ≤ r(2))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rabs: |x|
,
rsub: x - y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
nat_plus: ℕ+
,
all: ∀x:A. B[x]
,
apply: f a
,
multiply: n * m
,
natural_number: $n
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
real: ℝ
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
top: Top
,
prop: ℙ
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
rdiv: (x/y)
,
uiff: uiff(P;Q)
,
req_int_terms: t1 ≡ t2
,
rev_uimplies: rev_uimplies(P;Q)
,
rge: x ≥ y
,
rational-approx: (x within 1/n)
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
subtype_rel: A ⊆r B
,
true: True
,
less_than: a < b
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
Lemmas referenced :
rational-approx-property,
rmul_preserves_rleq2,
rabs_wf,
rsub_wf,
rational-approx_wf,
int-to-real_wf,
rdiv_wf,
rless-int,
nat_plus_properties,
decidable__lt,
full-omega-unsat,
intformand_wf,
intformnot_wf,
intformless_wf,
itermConstant_wf,
itermVar_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_not_lemma,
int_formula_prop_less_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
rless_wf,
rleq-int,
decidable__le,
intformle_wf,
itermMultiply_wf,
int_formula_prop_le_lemma,
int_term_value_mul_lemma,
nat_plus_wf,
real_wf,
rmul_wf,
radd_wf,
rminus_wf,
itermSubtract_wf,
itermAdd_wf,
itermMinus_wf,
rinv_wf2,
rleq_wf,
istype-false,
rleq_functionality,
req_transitivity,
rmul_functionality,
req_weakening,
req_inversion,
rmul-int,
rabs_functionality,
rmul-rinv,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_mul_lemma,
real_term_value_var_lemma,
real_term_value_const_lemma,
real_term_value_add_lemma,
real_term_value_minus_lemma,
uiff_transitivity,
rmul-nonneg-rabs,
rleq_functionality_wrt_implies,
rleq_weakening_equal,
rleq_weakening,
int-rdiv_wf,
intformeq_wf,
int_formula_prop_eq_lemma,
int_subtype_base,
nequal_wf,
rneq_functionality,
rneq-int,
set_subtype_base,
less_than_wf,
minus-one-mul-top,
subtype_base_sq,
req_functionality,
radd_functionality,
rminus_functionality,
int-rdiv-req,
rsub_functionality,
squash_wf,
true_wf,
rminus-int,
rinv_functionality2,
rinv-of-rmul,
int-rinv-cancel
Rules used in proof :
cut,
introduction,
extract_by_obid,
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
hypothesis,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
isectElimination,
setElimination,
rename,
multiplyEquality,
natural_numberEquality,
closedConclusion,
because_Cache,
independent_isectElimination,
sqequalRule,
inrFormation_alt,
productElimination,
independent_functionElimination,
unionElimination,
approximateComputation,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
isect_memberEquality_alt,
voidElimination,
independent_pairFormation,
universeIsType,
applyEquality,
dependent_set_memberEquality_alt,
equalityIstype,
inhabitedIsType,
baseApply,
baseClosed,
sqequalBase,
equalitySymmetry,
intEquality,
minusEquality,
imageMemberEquality,
instantiate,
cumulativity,
equalityTransitivity,
imageElimination
Latex:
\mforall{}x:\mBbbR{}. \mforall{}n:\mBbbN{}\msupplus{}. (|(r(2 * n) * x) - r(x n)| \mleq{} r(2))
Date html generated:
2019_10_29-AM-10_00_45
Last ObjectModification:
2019_02_13-PM-02_44_43
Theory : reals
Home
Index