Step
*
1
1
2
1
1
1
1
of Lemma
real-Cramers-rule1
1. n : ℕ
2. (ℕn ⟶ ℕn ⟶ ℝ) ⊆r Matrix(n;n;real-ring())
3. A : ℕn ⟶ ℕn ⟶ ℝ
4. c : {c:ℝ| (c * |A|) = r1}
5. b : ℝ^n
6. (A*c*col(λj.|λx,y. if y=j then b x else (A x y)|)) = col(b) ∈ Column(n;real-ring())
7. (A*c*col(λj.|λx,y. if y=j then b x else (A x y)|)) ∈ ℝ(n × 1)
⊢ (A*c*col(λj.|λx,y. if y=j then b x else (A x y)|)) ≡ col(b)
BY
{ ((Assert ⌜(A*c*col(λj.|λx,y. if y=j then b x else (A x y)|)) ≡ col(b)⌝⋅
THENM (RWO "matrix-times-req-real-matrix-times" (-1) THEN Auto)
)
THEN MoveToConcl (-2)
THEN GenConclAtAddr [1;2]
THEN All Thin) }
1
1. n : ℕ
2. b : ℝ^n
3. v : ℝ(n × 1)
⊢ (v = col(b) ∈ Column(n;real-ring()))
⇒ v ≡ col(b)
Latex:
Latex:
1. n : \mBbbN{}
2. (\mBbbN{}n {}\mrightarrow{} \mBbbN{}n {}\mrightarrow{} \mBbbR{}) \msubseteq{}r Matrix(n;n;real-ring())
3. A : \mBbbN{}n {}\mrightarrow{} \mBbbN{}n {}\mrightarrow{} \mBbbR{}
4. c : \{c:\mBbbR{}| (c * |A|) = r1\}
5. b : \mBbbR{}\^{}n
6. (A*c*col(\mlambda{}j.|\mlambda{}x,y. if y=j then b x else (A x y)|)) = col(b)
7. (A*c*col(\mlambda{}j.|\mlambda{}x,y. if y=j then b x else (A x y)|)) \mmember{} \mBbbR{}(n \mtimes{} 1)
\mvdash{} (A*c*col(\mlambda{}j.|\mlambda{}x,y. if y=j then b x else (A x y)|)) \mequiv{} col(b)
By
Latex:
((Assert \mkleeneopen{}(A*c*col(\mlambda{}j.|\mlambda{}x,y. if y=j then b x else (A x y)|)) \mequiv{} col(b)\mkleeneclose{}\mcdot{}
THENM (RWO "matrix-times-req-real-matrix-times" (-1) THEN Auto)
)
THEN MoveToConcl (-2)
THEN GenConclAtAddr [1;2]
THEN All Thin)
Home
Index