Step
*
of Lemma
real-continuity2-ext
∀a,b:ℝ.
∀f:[a, b] ⟶ℝ
((∀x,y:{x:ℝ| x ∈ [a, b]} . (f x ≠ f y
⇒ x ≠ y))
⇒ (∀k:ℕ+. ∃d:{d:ℝ| r0 < d} . ∀x,y:{x:ℝ| x ∈ [a, b]} . ((|x - y| ≤ d)
⇒ (|(f x) - f y| ≤ (r1/r(k))))))
supposing a ≤ b
BY
{ Extract of Obid: real-continuity2
not unfolding recops exp realops realcont real-cont-br real-cont-ps
finishing with Auto
normalizes to:
λa,b,f,_,k.
eval x = real-cont-br(a; b; f; k; 4) - 1 in
eval x = real-cont-ps(k;a;b;f;x;4) in
if finite-cantor-decider(λx,y.
eval x = x - y in
if (0) < (x)
then if (4) < (x) then inl Ax else (inr (λ_.Ax) )
else if (4) < (-x)
then inl Ax
else (inr (λ_.Ax) );x;λg.(f
cantor-to-interval(a;b;λi.if (i) < (x)
then g i
else ...)
(4 * k)))
then eval x = real-cont-br(a; b; f; k; 2) - 1 in
eval m = real-cont-ps(k;a;b;f;x;2) in
<(2^m * b - a)/6 * 3^m, λx,y,_,n. <λv.Ax, Ax, Ax>>
else <r1, λx,y,_,n. <λv.Ax, Ax, Ax>>
fi }
Latex:
Latex:
\mforall{}a,b:\mBbbR{}.
\mforall{}f:[a, b] {}\mrightarrow{}\mBbbR{}
((\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . (f x \mneq{} f y {}\mRightarrow{} x \mneq{} y))
{}\mRightarrow{} (\mforall{}k:\mBbbN{}\msupplus{}
\mexists{}d:\{d:\mBbbR{}| r0 < d\}
\mforall{}x,y:\{x:\mBbbR{}| x \mmember{} [a, b]\} . ((|x - y| \mleq{} d) {}\mRightarrow{} (|(f x) - f y| \mleq{} (r1/r(k))))))
supposing a \mleq{} b
By
Latex:
Extract of Obid: real-continuity2
not unfolding recops exp realops realcont real-cont-br real-cont-ps
finishing with Auto
normalizes to:
\mlambda{}a,b,f,$_{}$,k.
eval x = real-cont-br(a; b; f; k; 4) - 1 in
eval x = real-cont-ps(k;a;b;f;x;4) in
if finite-cantor-decider(\mlambda{}x,y.
eval x = x - y in
if (0) < (x)
then if (4) < (x) then inl Ax else (inr (\mlambda{}$_\mbackslash{}\000Cff7b}$.Ax) )
else if (4) < (-x) then inl Ax else (inr (\mlambda{}$_\000C{}$.Ax) );x;...)
then eval x = real-cont-br(a; b; f; k; 2) - 1 in
eval m = real-cont-ps(k;a;b;f;x;2) in
<(2\^{}m * b - a)/6 * 3\^{}m, \mlambda{}x,y,$_{}$,n. <\mlambda{}v.Ax, Ax, Ax>>
else <r1, \mlambda{}x,y,$_{}$,n. <\mlambda{}v.Ax, Ax, Ax>>
fi
Home
Index