Nuprl Lemma : real-continuity2-ext

a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    ((∀x,y:{x:ℝx ∈ [a, b]} .  (f x ≠  x ≠ y))
     (∀k:ℕ+. ∃d:{d:ℝr0 < d} . ∀x,y:{x:ℝx ∈ [a, b]} .  ((|x y| ≤ d)  (|(f x) y| ≤ (r1/r(k)))))) 
  supposing a ≤ b


Proof




Definitions occuring in Statement :  rfun: I ⟶ℝ rccint: [l, u] i-member: r ∈ I rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a natural_number: $n
Definitions unfolded in proof :  real-continuity-ext real-continuity2 ifthenelse: if then else fi  bfalse: ff it: btrue: tt subtract: m member: t ∈ T
Lemmas referenced :  real-continuity2 real-continuity-ext
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y))
        {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k)))))) 
    supposing  a  \mleq{}  b



Date html generated: 2018_05_22-PM-02_11_39
Last ObjectModification: 2018_05_21-AM-00_27_29

Theory : reals


Home Index