Nuprl Lemma : real-continuity2-ext
∀a,b:ℝ.
  ∀f:[a, b] ⟶ℝ
    ((∀x,y:{x:ℝ| x ∈ [a, b]} .  (f x ≠ f y ⇒ x ≠ y))
    ⇒ (∀k:ℕ+. ∃d:{d:ℝ| r0 < d} . ∀x,y:{x:ℝ| x ∈ [a, b]} .  ((|x - y| ≤ d) ⇒ (|(f x) - f y| ≤ (r1/r(k)))))) 
  supposing a ≤ b
Proof
Definitions occuring in Statement : 
rfun: I ⟶ℝ, 
rccint: [l, u], 
i-member: r ∈ I, 
rdiv: (x/y), 
rneq: x ≠ y, 
rleq: x ≤ y, 
rless: x < y, 
rabs: |x|, 
rsub: x - y, 
int-to-real: r(n), 
real: ℝ, 
nat_plus: ℕ+, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
natural_number: $n
Definitions unfolded in proof : 
real-continuity-ext, 
real-continuity2, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
it: ⋅, 
btrue: tt, 
subtract: n - m, 
member: t ∈ T
Lemmas referenced : 
real-continuity2, 
real-continuity-ext
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a,b:\mBbbR{}.
    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}
        ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    (f  x  \mneq{}  f  y  {}\mRightarrow{}  x  \mneq{}  y))
        {}\mRightarrow{}  (\mforall{}k:\mBbbN{}\msupplus{}
                    \mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                      \mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  (|(f  x)  -  f  y|  \mleq{}  (r1/r(k)))))) 
    supposing  a  \mleq{}  b
Date html generated:
2018_05_22-PM-02_11_39
Last ObjectModification:
2018_05_21-AM-00_27_29
Theory : reals
Home
Index