Nuprl Lemma : real-continuity-ext
∀a,b:ℝ.  ∀f:[a, b] ⟶ℝ. real-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b
Proof
Definitions occuring in Statement : 
real-cont: real-cont(f;a;b)
, 
real-fun: real-fun(f;a;b)
, 
rfun: I ⟶ℝ
, 
rccint: [l, u]
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
false: False
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
stable__from_decidable, 
sq_stable__from_stable, 
iff_preserves_decidability, 
any: any x
, 
sq_stable_from_decidable, 
squash_elim, 
decidable_functionality, 
decidable__less_than', 
decidable__and, 
decidable__squash, 
rleq-iff-not-rless, 
rleq_functionality, 
sq_stable__rleq, 
cantor-to-interval-onto-common, 
cantor-to-int-uniform-continuity, 
decidable__lt, 
decidable-cantor-to-int-ext, 
real-continuity, 
real-cont-br: real-cont-br(a; b; f; k; N)
, 
real-cont-ps: real-cont-ps(k;a;b;f;x;N)
, 
let: let, 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
spreadn: spread3, 
absval: |i|
, 
subtract: n - m
, 
ifthenelse: if b then t else f fi 
, 
bottom: ⊥
, 
member: t ∈ T
Lemmas referenced : 
exception-not-value, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
int-value-type, 
value-type-has-value, 
lifting-strict-less, 
strict4-spread, 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-callbyvalue, 
real-continuity, 
stable__from_decidable, 
sq_stable__from_stable, 
iff_preserves_decidability, 
sq_stable_from_decidable, 
squash_elim, 
decidable_functionality, 
decidable__less_than', 
decidable__and, 
decidable__squash, 
rleq-iff-not-rless, 
rleq_functionality, 
sq_stable__rleq, 
cantor-to-interval-onto-common, 
cantor-to-int-uniform-continuity, 
decidable__lt, 
decidable-cantor-to-int-ext
Rules used in proof : 
independent_functionElimination, 
sqleReflexivity, 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
intEquality, 
inrFormation, 
lessExceptionCases, 
because_Cache, 
productElimination, 
hypothesisEquality, 
closedConclusion, 
baseApply, 
callbyvalueLess, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b
Date html generated:
2018_05_22-PM-02_11_11
Last ObjectModification:
2018_05_21-AM-00_26_41
Theory : reals
Home
Index