Nuprl Lemma : real-continuity-ext

a,b:ℝ.  ∀f:[a, b] ⟶ℝreal-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b


Proof




Definitions occuring in Statement :  real-cont: real-cont(f;a;b) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  false: False squash: T or: P ∨ Q guard: {T} prop: has-value: (a)↓ implies:  Q all: x:A. B[x] and: P ∧ Q strict4: strict4(F) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] uimplies: supposing a so_apply: x[s] top: Top so_lambda: λ2x.t[x] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] stable__from_decidable sq_stable__from_stable iff_preserves_decidability any: any x sq_stable_from_decidable squash_elim decidable_functionality decidable__less_than' decidable__and decidable__squash rleq-iff-not-rless rleq_functionality sq_stable__rleq cantor-to-interval-onto-common cantor-to-int-uniform-continuity decidable__lt decidable-cantor-to-int-ext real-continuity real-cont-br: real-cont-br(a; b; f; k; N) real-cont-ps: real-cont-ps(k;a;b;f;x;N) let: let bfalse: ff it: btrue: tt spreadn: spread3 absval: |i| subtract: m ifthenelse: if then else fi  bottom: member: t ∈ T
Lemmas referenced :  exception-not-value is-exception_wf base_wf has-value_wf_base int-value-type value-type-has-value lifting-strict-less strict4-spread lifting-strict-decide strict4-decide lifting-strict-callbyvalue real-continuity stable__from_decidable sq_stable__from_stable iff_preserves_decidability sq_stable_from_decidable squash_elim decidable_functionality decidable__less_than' decidable__and decidable__squash rleq-iff-not-rless rleq_functionality sq_stable__rleq cantor-to-interval-onto-common cantor-to-int-uniform-continuity decidable__lt decidable-cantor-to-int-ext
Rules used in proof :  independent_functionElimination sqleReflexivity inlFormation exceptionSqequal imageElimination imageMemberEquality intEquality inrFormation lessExceptionCases because_Cache productElimination hypothesisEquality closedConclusion baseApply callbyvalueLess lambdaFormation independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b



Date html generated: 2018_05_22-PM-02_11_11
Last ObjectModification: 2018_05_21-AM-00_26_41

Theory : reals


Home Index