Nuprl Lemma : decidable-cantor-to-int-ext
∀[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y])) ⇒ (∀F:(ℕ ⟶ 𝔹) ⟶ ℤ. Dec(∃f,g:ℕ ⟶ 𝔹. R[F f;F g])))
Proof
Definitions occuring in Statement : 
nat: ℕ, 
bool: 𝔹, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
member: t ∈ T, 
bfalse: ff, 
it: ⋅, 
btrue: tt, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
let: let, 
lt_int: i <z j, 
so_lambda: λ2x.t[x], 
spreadn: spread3, 
decidable-cantor-to-int, 
cantor-to-int-uniform-continuity, 
decidable-finite-cantor-to-int, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_apply: x[s]
Lemmas referenced : 
decidable-cantor-to-int, 
lifting-strict-spread, 
istype-void, 
strict4-spread, 
lifting-strict-callbyvalue, 
lifting-strict-less, 
strict4-decide, 
cantor-to-int-uniform-continuity, 
decidable-finite-cantor-to-int
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  Dec(\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))
Date html generated:
2019_10_15-AM-10_26_38
Last ObjectModification:
2019_08_05-PM-02_14_27
Theory : continuity
Home
Index