Nuprl Lemma : decidable-cantor-to-int-ext

[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y]))  (∀F:(ℕ ⟶ 𝔹) ⟶ ℤDec(∃f,g:ℕ ⟶ 𝔹R[F f;F g])))


Proof




Definitions occuring in Statement :  nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  member: t ∈ T bfalse: ff it: btrue: tt subtract: m ifthenelse: if then else fi  let: let lt_int: i <j so_lambda: λ2x.t[x] spreadn: spread3 decidable-cantor-to-int cantor-to-int-uniform-continuity decidable-finite-cantor-to-int uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_apply: x[s]
Lemmas referenced :  decidable-cantor-to-int lifting-strict-spread istype-void strict4-spread lifting-strict-callbyvalue lifting-strict-less strict4-decide cantor-to-int-uniform-continuity decidable-finite-cantor-to-int
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality_alt voidElimination independent_isectElimination

Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  Dec(\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))



Date html generated: 2019_10_15-AM-10_26_38
Last ObjectModification: 2019_08_05-PM-02_14_27

Theory : continuity


Home Index