Nuprl Lemma : decidable-finite-cantor-to-int

[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y]))  (∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ ℤ.  Dec(∃f,g:ℕn ⟶ 𝔹R[F f;F g])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  finite-cantor-decider_wf int_seg_wf bool_wf nat_wf all_wf decidable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation rename introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin intEquality sqequalRule lambdaEquality applyEquality hypothesisEquality dependent_functionElimination hypothesis functionEquality natural_numberEquality setElimination cumulativity universeEquality

Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.    Dec(\mexists{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))



Date html generated: 2019_06_20-PM-02_49_53
Last ObjectModification: 2018_09_26-AM-09_54_21

Theory : continuity


Home Index