Nuprl Lemma : decidable-finite-cantor-to-int
∀[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y])) 
⇒ (∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ ℤ.  Dec(∃f,g:ℕn ⟶ 𝔹. R[F f;F g])))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
finite-cantor-decider_wf, 
int_seg_wf, 
bool_wf, 
nat_wf, 
all_wf, 
decidable_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
rename, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
functionEquality, 
natural_numberEquality, 
setElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}]
    ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.    Dec(\mexists{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))
Date html generated:
2019_06_20-PM-02_49_53
Last ObjectModification:
2018_09_26-AM-09_54_21
Theory : continuity
Home
Index