Nuprl Lemma : finite-cantor-decider_wf
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀dcdr:∀x,y:T.  Dec(R[x;y]). ∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ T.
    (finite-cantor-decider(dcdr;n;F) ∈ Dec(∃f,g:ℕn ⟶ 𝔹. R[F f;F g]))
Proof
Definitions occuring in Statement : 
finite-cantor-decider: finite-cantor-decider(dcdr;n;F)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
decidable-finite-cantor-ext, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
bool_wf, 
nat_wf, 
all_wf, 
decidable_wf, 
decidable-finite-cantor-ext, 
uall_wf, 
exists_wf, 
isect_wf, 
equal_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
functionEquality, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
instantiate, 
independent_functionElimination, 
isectEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}dcdr:\mforall{}x,y:T.    Dec(R[x;y]).  \mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.
        (finite-cantor-decider(dcdr;n;F)  \mmember{}  Dec(\mexists{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g]))
Date html generated:
2019_06_20-PM-02_49_52
Last ObjectModification:
2018_09_26-AM-09_54_21
Theory : continuity
Home
Index