Nuprl Lemma : finite-cantor-decider_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀dcdr:∀x,y:T.  Dec(R[x;y]). ∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ T.
    (finite-cantor-decider(dcdr;n;F) ∈ Dec(∃f,g:ℕn ⟶ 𝔹R[F f;F g]))


Proof




Definitions occuring in Statement :  finite-cantor-decider: finite-cantor-decider(dcdr;n;F) int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] decidable-finite-cantor-ext implies:  Q subtype_rel: A ⊆B exists: x:A. B[x]
Lemmas referenced :  int_seg_wf bool_wf nat_wf all_wf decidable_wf decidable-finite-cantor-ext uall_wf exists_wf isect_wf equal_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution hypothesis functionEquality extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality sqequalRule lambdaEquality applyEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache cumulativity universeEquality isect_memberEquality instantiate independent_functionElimination isectEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}dcdr:\mforall{}x,y:T.    Dec(R[x;y]).  \mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.
        (finite-cantor-decider(dcdr;n;F)  \mmember{}  Dec(\mexists{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g]))



Date html generated: 2019_06_20-PM-02_49_52
Last ObjectModification: 2018_09_26-AM-09_54_21

Theory : continuity


Home Index