Nuprl Lemma : decidable-finite-cantor-ext

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ((∀x,y:T.  Dec(R[x;y]))  (∀n:ℕ. ∀F:(ℕn ⟶ 𝔹) ⟶ T.  Dec(∃f,g:ℕn ⟶ 𝔹R[F f;F g])))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  member: t ∈ T it: ifthenelse: if then else fi  finite-cantor-decider: finite-cantor-decider(dcdr;n;F) decidable-finite-cantor sq_stable_from_decidable sq_stable__from_stable stable__from_decidable any: any x
Lemmas referenced :  decidable-finite-cantor sq_stable_from_decidable sq_stable__from_stable stable__from_decidable
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  \mforall{}F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.    Dec(\mexists{}f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))



Date html generated: 2018_05_21-PM-01_17_19
Last ObjectModification: 2018_05_19-AM-06_32_33

Theory : continuity


Home Index