Nuprl Lemma : decidable-cantor-to-int

[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y]))  (∀F:(ℕ ⟶ 𝔹) ⟶ ℤDec(∃f,g:ℕ ⟶ 𝔹R[F f;F g])))


Proof




Definitions occuring in Statement :  nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a nat: sq_type: SQType(T) guard: {T} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B bfalse: ff so_apply: x[s1;s2] decidable: Dec(P) or: P ∨ Q not: ¬A subtype_rel: A ⊆B less_than': less_than'(a;b) false: False bnot: ¬bb assert: b ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  cantor-to-int-uniform-continuity nat_wf equal_wf set-value-type le_wf int-value-type subtype_base_sq set_subtype_base int_subtype_base decidable-finite-cantor-to-int bool_wf lt_int_wf eqtt_to_assert assert_of_lt_int int_seg_wf lelt_wf all_wf decidable_wf not_wf exists_wf subtype_rel_dep_function int_seg_subtype_nat false_wf subtype_rel_self ifthenelse_wf bfalse_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination rename cutEval dependent_set_memberEquality isectElimination equalityTransitivity equalitySymmetry sqequalRule lambdaEquality independent_isectElimination intEquality natural_numberEquality setElimination promote_hyp instantiate cumulativity independent_functionElimination applyEquality functionExtensionality functionEquality because_Cache unionElimination equalityElimination independent_pairFormation universeEquality inlFormation inrFormation dependent_pairFormation voidElimination addLevel hyp_replacement int_eqEquality isect_memberEquality voidEquality computeAll levelHypothesis

Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  Dec(\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))



Date html generated: 2017_04_17-AM-09_59_41
Last ObjectModification: 2017_02_27-PM-05_52_36

Theory : continuity


Home Index