Nuprl Lemma : decidable-cantor-to-int
∀[R:ℤ ⟶ ℤ ⟶ ℙ]. ((∀x,y:ℤ.  Dec(R[x;y])) 
⇒ (∀F:(ℕ ⟶ 𝔹) ⟶ ℤ. Dec(∃f,g:ℕ ⟶ 𝔹. R[F f;F g])))
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
nat: ℕ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
bfalse: ff
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
subtype_rel: A ⊆r B
, 
less_than': less_than'(a;b)
, 
false: False
, 
bnot: ¬bb
, 
assert: ↑b
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
Lemmas referenced : 
cantor-to-int-uniform-continuity, 
nat_wf, 
equal_wf, 
set-value-type, 
le_wf, 
int-value-type, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
decidable-finite-cantor-to-int, 
bool_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
int_seg_wf, 
lelt_wf, 
all_wf, 
decidable_wf, 
not_wf, 
exists_wf, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
ifthenelse_wf, 
bfalse_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
int_seg_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
rename, 
cutEval, 
dependent_set_memberEquality, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
intEquality, 
natural_numberEquality, 
setElimination, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_functionElimination, 
applyEquality, 
functionExtensionality, 
functionEquality, 
because_Cache, 
unionElimination, 
equalityElimination, 
independent_pairFormation, 
universeEquality, 
inlFormation, 
inrFormation, 
dependent_pairFormation, 
voidElimination, 
addLevel, 
hyp_replacement, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
levelHypothesis
Latex:
\mforall{}[R:\mBbbZ{}  {}\mrightarrow{}  \mBbbZ{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}x,y:\mBbbZ{}.    Dec(R[x;y]))  {}\mRightarrow{}  (\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  Dec(\mexists{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  R[F  f;F  g])))
Date html generated:
2017_04_17-AM-09_59_41
Last ObjectModification:
2017_02_27-PM-05_52_36
Theory : continuity
Home
Index