Nuprl Lemma : cantor-to-int-uniform-continuity

F:(ℕ ⟶ 𝔹) ⟶ ℤ. ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ ℤ))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T subtract: m ifthenelse: if then else fi  ext2Cantor: ext2Cantor(n;f;d) lt_int: i <j it: bfalse: ff btrue: tt strong-continuity2-implies-uniform-continuity2-int uniform-continuity-pi-pi-prop2 decidable__equal_int prop-truncation-implies strong-continuity2-implies-uniform-continuity-int-ext uniform-continuity-pi-dec decidable__int_equal sq_stable__all sq_stable__le any: any x decidable_functionality uniform-continuity-pi2-dec-ext iff_weakening_equal iff_preserves_decidability uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  strong-continuity2-implies-uniform-continuity2-int lifting-strict-spread istype-void strict4-spread lifting-strict-callbyvalue lifting-strict-decide strict4-decide lifting-strict-int_eq lifting-strict-less uniform-continuity-pi-pi-prop2 decidable__equal_int prop-truncation-implies strong-continuity2-implies-uniform-continuity-int-ext uniform-continuity-pi-dec decidable__int_equal sq_stable__all sq_stable__le decidable_functionality uniform-continuity-pi2-dec-ext iff_weakening_equal iff_preserves_decidability
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))



Date html generated: 2019_06_20-PM-02_53_31
Last ObjectModification: 2019_03_12-PM-05_57_02

Theory : continuity


Home Index