Nuprl Lemma : cantor-to-int-uniform-continuity
∀F:(ℕ ⟶ 𝔹) ⟶ ℤ. ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f = g ∈ (ℕn ⟶ 𝔹)) ⇒ ((F f) = (F g) ∈ ℤ))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
subtract: n - m, 
ifthenelse: if b then t else f fi , 
ext2Cantor: ext2Cantor(n;f;d), 
lt_int: i <z j, 
it: ⋅, 
bfalse: ff, 
btrue: tt, 
strong-continuity2-implies-uniform-continuity2-int, 
uniform-continuity-pi-pi-prop2, 
decidable__equal_int, 
prop-truncation-implies, 
strong-continuity2-implies-uniform-continuity-int-ext, 
uniform-continuity-pi-dec, 
decidable__int_equal, 
sq_stable__all, 
sq_stable__le, 
any: any x, 
decidable_functionality, 
uniform-continuity-pi2-dec-ext, 
iff_weakening_equal, 
iff_preserves_decidability, 
uall: ∀[x:A]. B[x], 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]), 
so_apply: x[s1;s2;s3;s4], 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
strong-continuity2-implies-uniform-continuity2-int, 
lifting-strict-spread, 
istype-void, 
strict4-spread, 
lifting-strict-callbyvalue, 
lifting-strict-decide, 
strict4-decide, 
lifting-strict-int_eq, 
lifting-strict-less, 
uniform-continuity-pi-pi-prop2, 
decidable__equal_int, 
prop-truncation-implies, 
strong-continuity2-implies-uniform-continuity-int-ext, 
uniform-continuity-pi-dec, 
decidable__int_equal, 
sq_stable__all, 
sq_stable__le, 
decidable_functionality, 
uniform-continuity-pi2-dec-ext, 
iff_weakening_equal, 
iff_preserves_decidability
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
baseClosed, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_isectElimination
Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))
Date html generated:
2019_06_20-PM-02_53_31
Last ObjectModification:
2019_03_12-PM-05_57_02
Theory : continuity
Home
Index