Nuprl Lemma : uniform-continuity-pi-dec
∀T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x = y ∈ T)) ⇒ ucA(T;F;n) ⇒ (∀m:ℕ. (m < n ⇒ Dec(ucA(T;F;m)))))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi: ucA(T;F;n), 
nat: ℕ, 
bool: 𝔹, 
less_than: a < b, 
decidable: Dec(P), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
prop: ℙ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uniform-continuity-pi2: ucB(T;F;n), 
uniform-continuity-pi: ucA(T;F;n), 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
int_seg: {i..j-}, 
sq_type: SQType(T), 
guard: {T}, 
lelt: i ≤ j < k, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
ext2Cantor: ext2Cantor(n;f;d), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bnot: ¬bb, 
subtract: n - m, 
label: ...$L... t, 
squash: ↓T
Lemmas referenced : 
istype-less_than, 
uniform-continuity-pi_wf, 
decidable_wf, 
equal_wf, 
istype-nat, 
bool_wf, 
istype-universe, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
uniform-continuity-pi2_wf, 
int_seg_wf, 
ext2Cantor_wf, 
btrue_wf, 
bfalse_wf, 
eq_ext2Cantor, 
subtype_rel_function, 
nat_wf, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
decidable__equal_bool, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
iff_imp_equal_bool, 
assert_elim, 
bool_subtype_base, 
istype-assert, 
bool_cases, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
set_subtype_base, 
le_wf, 
lelt_wf, 
bool_cases_sqequal, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
int_seg_properties, 
decidable_functionality, 
uniform-continuity-pi2-dec-ext, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
primrec-wf2, 
all_wf, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
minus-one-mul, 
minus-add, 
minus-minus, 
minus-one-mul-top, 
less-iff-le, 
add_functionality_wrt_le, 
le-add-cancel, 
equal_functionality_wrt_subtype_rel2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
sqequalRule, 
Error :functionIsType, 
because_Cache, 
instantiate, 
universeEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
natural_numberEquality, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :equalityIsType1, 
applyEquality, 
functionExtensionality, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
Error :productIsType, 
applyLambdaEquality, 
equalityElimination, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
Error :setIsType, 
functionEquality, 
Error :inlFormation_alt, 
imageElimination, 
imageMemberEquality, 
Error :inrFormation_alt, 
minusEquality
Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.
    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  ucA(T;F;n)  {}\mRightarrow{}  (\mforall{}m:\mBbbN{}.  (m  <  n  {}\mRightarrow{}  Dec(ucA(T;F;m)))))
Date html generated:
2019_06_20-PM-02_53_17
Last ObjectModification:
2018_10_30-PM-02_45_33
Theory : continuity
Home
Index