Nuprl Lemma : eq_ext2Cantor

n:ℕ. ∀s:ℕn ⟶ 𝔹. ∀d1,d2:𝔹.  (ext2Cantor(n;s;d1) ext2Cantor(n;s;d2) ∈ (ℕn ⟶ 𝔹))


Proof




Definitions occuring in Statement :  ext2Cantor: ext2Cantor(n;f;d) int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T ext2Cantor: ext2Cantor(n;f;d) uall: [x:A]. B[x] int_seg: {i..j-} nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int int_seg_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis because_Cache lambdaEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality unionElimination equalityElimination productElimination independent_isectElimination sqequalRule applyEquality functionExtensionality natural_numberEquality dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination int_eqEquality intEquality isect_memberEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  \mforall{}d1,d2:\mBbbB{}.    (ext2Cantor(n;s;d1)  =  ext2Cantor(n;s;d2))



Date html generated: 2017_04_17-AM-09_57_45
Last ObjectModification: 2017_02_27-PM-05_51_05

Theory : continuity


Home Index