Nuprl Lemma : uniform-continuity-pi2-dec-ext

T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x y ∈ T))  Dec(ucB(T;F;n)))


Proof




Definitions occuring in Statement :  uniform-continuity-pi2: ucB(T;F;n) nat: bool: 𝔹 decidable: Dec(P) all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T btrue: tt it: bfalse: ff ifthenelse: if then else fi  uniform-continuity-pi2-dec decidable__not decidable__implies decidable__false any: any x
Lemmas referenced :  uniform-continuity-pi2-dec decidable__not decidable__implies decidable__false
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(ucB(T;F;n)))



Date html generated: 2018_05_21-PM-01_19_55
Last ObjectModification: 2018_05_19-AM-06_32_36

Theory : continuity


Home Index