Nuprl Lemma : uniform-continuity-pi2-dec-ext
∀T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ Dec(ucB(T;F;n)))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi2: ucB(T;F;n)
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T
, 
btrue: tt
, 
it: ⋅
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uniform-continuity-pi2-dec, 
decidable__not, 
decidable__implies, 
decidable__false, 
any: any x
Lemmas referenced : 
uniform-continuity-pi2-dec, 
decidable__not, 
decidable__implies, 
decidable__false
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(ucB(T;F;n)))
Date html generated:
2018_05_21-PM-01_19_55
Last ObjectModification:
2018_05_19-AM-06_32_36
Theory : continuity
Home
Index