Nuprl Lemma : uniform-continuity-pi2-dec
∀T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ Dec(ucB(T;F;n)))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi2: ucB(T;F;n)
, 
nat: ℕ
, 
bool: 𝔹
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uniform-continuity-pi2: ucB(T;F;n)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
guard: {T}
, 
false: False
Lemmas referenced : 
all_wf, 
decidable_wf, 
equal_wf, 
nat_wf, 
bool_wf, 
decidable__all_int_seg, 
int_seg_wf, 
decidable__bool, 
decidable__not, 
ext2Cantor_wf, 
btrue_wf, 
bfalse_wf, 
simple-finite-cantor-decider_wf, 
not_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
universeEquality, 
instantiate, 
dependent_functionElimination, 
natural_numberEquality, 
setElimination, 
rename, 
independent_functionElimination, 
applyEquality, 
introduction, 
unionElimination, 
productElimination, 
inrFormation, 
inlFormation, 
dependent_pairFormation, 
voidElimination
Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(ucB(T;F;n)))
Date html generated:
2016_05_14-PM-09_38_35
Last ObjectModification:
2015_12_26-PM-09_49_19
Theory : continuity
Home
Index