Nuprl Lemma : uniform-continuity-pi2-dec

T:Type. ∀F:(ℕ ⟶ 𝔹) ⟶ T. ∀n:ℕ.  ((∀x,y:T.  Dec(x y ∈ T))  Dec(ucB(T;F;n)))


Proof




Definitions occuring in Statement :  uniform-continuity-pi2: ucB(T;F;n) nat: bool: 𝔹 decidable: Dec(P) all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uniform-continuity-pi2: ucB(T;F;n) member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] nat: subtype_rel: A ⊆B exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q not: ¬A guard: {T} false: False
Lemmas referenced :  all_wf decidable_wf equal_wf nat_wf bool_wf decidable__all_int_seg int_seg_wf decidable__bool decidable__not ext2Cantor_wf btrue_wf bfalse_wf simple-finite-cantor-decider_wf not_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality universeEquality instantiate dependent_functionElimination natural_numberEquality setElimination rename independent_functionElimination applyEquality introduction unionElimination productElimination inrFormation inlFormation dependent_pairFormation voidElimination

Latex:
\mforall{}T:Type.  \mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T.  \mforall{}n:\mBbbN{}.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(ucB(T;F;n)))



Date html generated: 2016_05_14-PM-09_38_35
Last ObjectModification: 2015_12_26-PM-09_49_19

Theory : continuity


Home Index