Nuprl Lemma : simple-finite-cantor-decider_wf

[T:Type]. ∀[R:T ⟶ ℙ]. ∀[dcdr:∀x:T. Dec(R[x])]. ∀[n:ℕ]. ∀[F:(ℕn ⟶ 𝔹) ⟶ T].
  (FiniteCantorDecide(dcdr;n;F) ∈ Dec(∃f:ℕn ⟶ 𝔹R[F f]))


Proof




Definitions occuring in Statement :  simple-finite-cantor-decider: FiniteCantorDecide(dcdr;n;F) int_seg: {i..j-} nat: bool: 𝔹 decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] member: t ∈ T apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop: simple-decidable-finite-cantor-ext implies:  Q subtype_rel: A ⊆B exists: x:A. B[x]
Lemmas referenced :  int_seg_wf bool_wf nat_wf all_wf decidable_wf simple-decidable-finite-cantor-ext uall_wf exists_wf isect_wf equal_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality extract_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality isect_memberEquality because_Cache lambdaEquality applyEquality cumulativity universeEquality instantiate lambdaFormation dependent_functionElimination independent_functionElimination isectEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[dcdr:\mforall{}x:T.  Dec(R[x])].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].
    (FiniteCantorDecide(dcdr;n;F)  \mmember{}  Dec(\mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f]))



Date html generated: 2019_06_20-PM-02_49_56
Last ObjectModification: 2018_09_26-AM-09_54_17

Theory : continuity


Home Index