Nuprl Lemma : simple-finite-cantor-decider_wf
∀[T:Type]. ∀[R:T ⟶ ℙ]. ∀[dcdr:∀x:T. Dec(R[x])]. ∀[n:ℕ]. ∀[F:(ℕn ⟶ 𝔹) ⟶ T].
  (FiniteCantorDecide(dcdr;n;F) ∈ Dec(∃f:ℕn ⟶ 𝔹. R[F f]))
Proof
Definitions occuring in Statement : 
simple-finite-cantor-decider: FiniteCantorDecide(dcdr;n;F), 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
prop: ℙ, 
simple-decidable-finite-cantor-ext, 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x]
Lemmas referenced : 
int_seg_wf, 
bool_wf, 
nat_wf, 
all_wf, 
decidable_wf, 
simple-decidable-finite-cantor-ext, 
uall_wf, 
exists_wf, 
isect_wf, 
equal_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
extract_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
instantiate, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
isectEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[dcdr:\mforall{}x:T.  Dec(R[x])].  \mforall{}[n:\mBbbN{}].  \mforall{}[F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].
    (FiniteCantorDecide(dcdr;n;F)  \mmember{}  Dec(\mexists{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbB{}.  R[F  f]))
Date html generated:
2019_06_20-PM-02_49_56
Last ObjectModification:
2018_09_26-AM-09_54_17
Theory : continuity
Home
Index