Nuprl Lemma : uniform-continuity-pi2_wf

[T:Type]. ∀[F:(ℕ ⟶ 𝔹) ⟶ T]. ∀[n:ℕ].  (ucB(T;F;n) ∈ Type)


Proof




Definitions occuring in Statement :  uniform-continuity-pi2: ucB(T;F;n) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uniform-continuity-pi2: ucB(T;F;n) nat: so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] prop:
Lemmas referenced :  all_wf int_seg_wf bool_wf equal_wf ext2Cantor_wf btrue_wf bfalse_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality setElimination rename hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].  \mforall{}[n:\mBbbN{}].    (ucB(T;F;n)  \mmember{}  Type)



Date html generated: 2016_05_14-PM-09_38_28
Last ObjectModification: 2015_12_26-PM-09_49_22

Theory : continuity


Home Index