Nuprl Lemma : uniform-continuity-pi2_wf
∀[T:Type]. ∀[F:(ℕ ⟶ 𝔹) ⟶ T]. ∀[n:ℕ].  (ucB(T;F;n) ∈ Type)
Proof
Definitions occuring in Statement : 
uniform-continuity-pi2: ucB(T;F;n)
, 
nat: ℕ
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uniform-continuity-pi2: ucB(T;F;n)
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
prop: ℙ
Lemmas referenced : 
all_wf, 
int_seg_wf, 
bool_wf, 
equal_wf, 
ext2Cantor_wf, 
btrue_wf, 
bfalse_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].  \mforall{}[n:\mBbbN{}].    (ucB(T;F;n)  \mmember{}  Type)
Date html generated:
2016_05_14-PM-09_38_28
Last ObjectModification:
2015_12_26-PM-09_49_22
Theory : continuity
Home
Index