Nuprl Lemma : strong-continuity2-implies-uniform-continuity2-int

F:(ℕ ⟶ 𝔹) ⟶ ℤ. ∃n:ℕ. ∀f,g:ℕ ⟶ 𝔹.  ((f g ∈ (ℕn ⟶ 𝔹))  ((F f) (F g) ∈ ℤ))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: bool: 𝔹 all: x:A. B[x] exists: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q uniform-continuity-pi: ucA(T;F;n) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q exists: x:A. B[x] uall: [x:A]. B[x] nat: subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: true: True so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cand: c∧ B quotient: x,y:A//B[x; y] squash: T sq_type: SQType(T) guard: {T} uniform-continuity-pi-pi: ucpB(T;F;n)
Lemmas referenced :  istype-nat bool_wf istype-int strong-continuity2-implies-uniform-continuity-int-ext uniform-continuity-pi-pi-prop2 decidable__equal_int int_seg_wf subtype_rel_function nat_wf int_seg_subtype_nat istype-false subtype_rel_self int_subtype_base true_wf quotient_wf exists_wf uniform-continuity-pi-pi_wf equiv_rel_true quotient-member-eq member_wf squash_wf istype-universe prop-truncation-implies uniform-continuity-pi-pi-prop subtype_base_sq set_subtype_base le_wf equal_wf equal-wf-base uniform-continuity-pi_wf le_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :functionIsType,  cut introduction extract_by_obid hypothesis Error :universeIsType,  sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality intEquality because_Cache independent_functionElimination Error :inhabitedIsType,  sqequalRule productElimination independent_pairFormation rename Error :productIsType,  Error :equalityIstype,  isectElimination natural_numberEquality setElimination applyEquality independent_isectElimination sqequalBase equalitySymmetry promote_hyp Error :lambdaEquality_alt,  closedConclusion productEquality pointwiseFunctionality pertypeElimination imageElimination equalityTransitivity instantiate universeEquality imageMemberEquality baseClosed cumulativity Error :dependent_pairEquality_alt,  independent_pairEquality Error :functionExtensionality_alt,  functionExtensionality functionEquality equalityElimination

Latex:
\mforall{}F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbZ{}.  \mexists{}n:\mBbbN{}.  \mforall{}f,g:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.    ((f  =  g)  {}\mRightarrow{}  ((F  f)  =  (F  g)))



Date html generated: 2019_06_20-PM-02_53_28
Last ObjectModification: 2018_11_28-AM-09_01_29

Theory : continuity


Home Index