Nuprl Lemma : le_witness
∀[i,j:ℤ]. ∀[x:i ≤ j].  (x = <λx.x, Ax, Ax> ∈ (i ≤ j))
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
int: ℤ
, 
equal: s = t ∈ T
, 
axiom: Ax
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
Lemmas referenced : 
le_wf, 
istype-int, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :isect_memberEquality_alt, 
axiomEquality, 
because_Cache, 
Error :inhabitedIsType, 
productElimination, 
equalityElimination, 
independent_pairEquality, 
Error :functionExtensionality_alt, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[x:i  \mleq{}  j].    (x  =  <\mlambda{}x.x,  Ax,  Ax>)
Date html generated:
2019_06_20-AM-11_22_27
Last ObjectModification:
2018_10_01-PM-07_00_30
Theory : arithmetic
Home
Index