Nuprl Lemma : le_witness

[i,j:ℤ]. ∀[x:i ≤ j].  (x = <λx.x, Ax, Ax> ∈ (i ≤ j))


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] le: A ≤ B lambda: λx.A[x] pair: <a, b> int: equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False
Lemmas referenced :  le_wf istype-int less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :isect_memberEquality_alt,  axiomEquality because_Cache Error :inhabitedIsType,  productElimination equalityElimination independent_pairEquality Error :functionExtensionality_alt,  independent_functionElimination voidElimination

Latex:
\mforall{}[i,j:\mBbbZ{}].  \mforall{}[x:i  \mleq{}  j].    (x  =  <\mlambda{}x.x,  Ax,  Ax>)



Date html generated: 2019_06_20-AM-11_22_27
Last ObjectModification: 2018_10_01-PM-07_00_30

Theory : arithmetic


Home Index