Nuprl Lemma : uniform-continuity-pi-pi-prop
∀[T:Type]. ∀[F:(ℕ ⟶ 𝔹) ⟶ T]. ∀[n,m:ℕ].  (n = m ∈ ℕ) supposing (ucpB(T;F;m) and ucpB(T;F;n))
Proof
Definitions occuring in Statement : 
uniform-continuity-pi-pi: ucpB(T;F;n)
, 
nat: ℕ
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uniform-continuity-pi-pi: ucpB(T;F;n)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
and: P ∧ Q
Lemmas referenced : 
int_term_value_constant_lemma, 
itermConstant_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
int_formula_prop_and_lemma, 
intformand_wf, 
decidable__equal_int, 
bool_wf, 
nat_wf, 
uniform-continuity-pi-pi_wf, 
int_formula_prop_wf, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_or_lemma, 
int_formula_prop_not_lemma, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
intformor_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
decidable__lt, 
le_wf, 
less_than_wf, 
decidable__or, 
nat_properties
Rules used in proof : 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
introduction, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].  \mforall{}[n,m:\mBbbN{}].    (n  =  m)  supposing  (ucpB(T;F;m)  and  ucpB(T;F;n))
Date html generated:
2016_05_14-PM-09_39_03
Last ObjectModification:
2016_01_15-PM-10_56_27
Theory : continuity
Home
Index