Nuprl Lemma : uniform-continuity-pi-pi-prop

[T:Type]. ∀[F:(ℕ ⟶ 𝔹) ⟶ T]. ∀[n,m:ℕ].  (n m ∈ ℕsupposing (ucpB(T;F;m) and ucpB(T;F;n))


Proof




Definitions occuring in Statement :  uniform-continuity-pi-pi: ucpB(T;F;n) nat: bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uniform-continuity-pi-pi: ucpB(T;F;n) uall: [x:A]. B[x] member: t ∈ T nat: ge: i ≥  implies:  Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: and: P ∧ Q
Lemmas referenced :  int_term_value_constant_lemma itermConstant_wf int_formula_prop_eq_lemma intformeq_wf int_formula_prop_and_lemma intformand_wf decidable__equal_int bool_wf nat_wf uniform-continuity-pi-pi_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma intformle_wf itermVar_wf intformless_wf intformor_wf intformnot_wf satisfiable-full-omega-tt decidable__le decidable__lt le_wf less_than_wf decidable__or nat_properties
Rules used in proof :  sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin cut lemma_by_obid isectElimination hypothesisEquality hypothesis setElimination rename independent_functionElimination dependent_functionElimination because_Cache unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll functionEquality universeEquality isect_memberFormation introduction axiomEquality equalityTransitivity equalitySymmetry independent_pairFormation dependent_set_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  T].  \mforall{}[n,m:\mBbbN{}].    (n  =  m)  supposing  (ucpB(T;F;m)  and  ucpB(T;F;n))



Date html generated: 2016_05_14-PM-09_39_03
Last ObjectModification: 2016_01_15-PM-10_56_27

Theory : continuity


Home Index